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ABSTRACT
As throughput of computer networks is on a constant rise, there is
a need for ever-faster packet parsing modules at all points of the
networking infrastructure. Parsing is a crucial operation which has
an influence on the final throughput of a network device. Moreover,
this operation must precede any kind of further traffic processing
like filtering/classification, deep packet inspection, and so on.

This paper presents a parser architecture which is capable to
currently scale up to a terabit throughput in a single FPGA, while
the overall processing speed is sustained even on the shortest frame
lengths and for an arbitrary number of supported protocols. The
architecture of our parser can be also automatically generated from
a high-level description of a protocol stack in the P4 language which
makes the rapid deployment of new protocols considerably easier.
The results presented in the paper confirm that our automatically
generated parsers are capable of reaching an effective throughput
of over 1 Tbps (or more than 2 000Mpps) on the Xilinx UltraScale+
FPGAs and around 800Gbps (or more than 1 200Mpps) on their
previous generation Virtex-7 FPGAs.
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1 INTRODUCTION
The speeds of network links are growing very fast. This holds
true not only in the core of carrier networks but also in a wide
variety of application-specific cases. Parsing is a crucial opera-
tion that must precede any kind of further traffic processing like
filtering/classification, deep packet inspection, and even basic rout-
ing/switching. With network lanes currently operating at hundreds
of gigabits per second, and terabit requirements on the horizon,
an effective design of packet parser capable of lossless wire-speed
processing poses a major challenge.

Apart from high performance, current networks also require
parsers to support an extensive set of various protocols. Further-
more, these requirements are changing rapidly as network protocols
are constantly evolving. This trend is spearheaded by the success of
Software Defined Networking and the end of network "ossification"
that comes with it. The changing nature of networking ecosystem
thus clearly favors flexible (programmable) technologies like FP-
GAs over fixed ASIC implementations. On top of that, utilization of
some form of High-Level Synthesis in parser description is a must.

Fastest of current FPGA-based packet parsers are able to achieve
a raw (theoretical) throughput of little over 400Gbps by utilizing
very wide (up to 2 048 b or 256 B) data buses. No approaches ca-
pable of 1 Tbps parsing has been presented so far. Nearly all of
the existing parsers support some form of a higher-level protocol
stack description followed by an automatic or semi-automatic HDL
code generation. But the key issue, that still remains largely un-
addressed in all of the previous works in this area, is the effective
throughput achievable by the parsers at different traffic patterns.
In the worst case, when bursts of the shortest possible packets are
processed, the effective throughput of existing approaches drops
to only a small fraction of advertised raw throughput as they can
process only a single packet per clock cycle. This degradation of
effective throughput is getting more severe as the raw throughput
(bus width) increases and becomes unbearably large for wire-speed
processing even at 100Gbps or 400Gbps.

The shortest allowed length of L2 Ethernet frame is 64 B (512 b).
At the same time, a typical implementation of FPGA packet parser
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Figure 1: Proposed concept of main parser structure.

at 100Gbps uses data bus that is 512 b wide and running at a clock
frequency of at least 195MHz. The shortest 64 B Ethernet frame fits
nicely into a single data bus word. But what about 65 B, 66 B and
similar frame lengths? When a few bytes spill into the second word,
the rest of that word remains unused, yielding effective throughput
of only around a half of the parser raw capacity. When data bus is
wider than the length of the shortest frames, the effective through-
put is even further reduced by insufficient packet rate. For example,
a 400Gbps parser operating with 2 048 b wide bus achieve effective
throughput of only a fourth of its raw capacity when processing the
shortest 64 B frames. Therefore, a processing of multiple packets or
their fractions per clock cycle must be possible to achieve higher
effective throughput of parsing.

This paper presents a novel packet parser design that not only
advances achievable raw throughput of parsing in FPGAs above
1 Tbps mark but more importantly enables to retain sufficiently
high effective throughput to guarantee the wire-speed processing
of even the shortest packets at these speeds. In order to achieve
such high degree of performance, the main feature of our proposed
parser is to maximally exploit the means for massive processing
parallelism that modern FPGAs offer.

The illustration of our key design concept is shown in Fig. 1. The
complexity of fast packet parsing is divided into multiple simple
parsers or analyzers (individual squares), where each of them can
process at most one packet per clock cycle and parse only one proto-
col header from a supported protocol stack (P1, P2 . . . ). The simple
parsers are organized in a matrix-shaped structure that enables uti-
lization of parallelism in two orthogonal dimensions. Firstly, each
incoming packet traverses the structure from left to right going
through a pipeline of simple parsers of different protocols, thus
protocol stack complexity is divided into multiple steps (columns).
Secondly, processing of multiple packets can start in every clock
cycle as multiple simple parsers are working in parallel at each
pipeline stage. In other words, the proposed matrix structure of our
parser enables to use FPGA resources for scaling of both protocol
stack complexity (width of the matrix) and achieved packet rate
(height of the matrix).

The contribution of our work is a novel packet parser design for
FPGAs that posses the following 3 key features:

(1) unprecedented raw throughput of over 1 Tbps;
(2) processing of multiple packets per clock cycle that leads to

sufficient effective throughput for wire-speed processing;
(3) modular structure supporting automatic generation of HDL

implementation from a high-level P4 description.

The rest of this paper is organized in the following manner. In
section 2, we introduce several published approaches to parser
design and compares them with our work. Section 3 describes our
parser design concept and architecture in depth. In section 4, we
provide a quick overview of the P4 language and description of
the supported automated generation of the proposed parser from
a P4 description. Section 5 contains results of achieved effective
throughput, chip area and latency of our parser architecture in
different configurations. Finally, the last section concludes the paper
and discusses the obtained results.

2 RELATEDWORK
Many fundamentally different approaches to FPGA packet parser
design are present in published works with various benefits and
disadvantages. However, many of them fail to scale well in a high-
speed deployment that we aim for. Furthermore, none of them
provide any robust and practical approach towards retainment of
sufficient effective throughput ratio in the worst case.

Kobierský et al. [5] implement packet parsing using finite state
machines generated from an XML description of protocol headers.
This work shows achievable throughput of up to 20Gbps. However,
effective further scalability of the approach is poor. The size of
generated FSMs (number of their states) rises rapidly with protocol
stack complexity and data bus width, creating a performance bot-
tleneck. Also, the crossbar used for extraction of fields values do
not scale well with rising data bus width.

Unique Kangaroo parsing architecture of Kozanitis et al. [6]
stores packets in memory and employes on-chip associative mem-
ory to perform a speculative lookahead into stored data. Based on
lookahead results, the packet format is sequentially constructed,
even moving through several headers in a single step (clock cycle).
Authors showed achievable throughput of this architecture to be
up to 40Gbps line rate. However, this approach has the architec-
tural limitation of storing the packets in the memory and fetching
their data afterward. When scaling for higher throughput, the mem-
ory soon becomes a bottleneck. Also, higher complexity of parsed
protocol stack can lead to considerably harder lookahead operation.

Wang et al. [10] introduce a rapid prototyping framework for
mapping of a domain-specific HLS source code (P4 language) to the
HDL description in BlueSpec language. The paper doesn’t provide
a detailed description of the generated parser’s architecture but it
provides results for its latency and throughput. The results show
a raw throughput of up to 10Gbps. But the effective throughput
of the generated parser degrades with the growing complexity
of supported protocol stack. With our parser design, we aim at
throughput independent on the number of supported protocols to
achieve wire-speed processing even in complex use cases. Also,
the scalability of the parser from [10] on higher throughputs is
questionable due to the generation of BlueSpec instead of HDL.

Another example of a domain-specific HLS generation of parsers
is provided by Attig and Brebner in [1]. They propose their own
Packet Parsing (PP) language to describe the structure of proto-
col headers and the methods which define parsing rules. From PP
source code a pipelined implementation of a parser is generated.
Thanks to the extreme pipelining and data bus width, generated
parsers are able to achieve raw throughputs of up to 400Gbps.
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However, the results indicate a heavy price for such throughput in
terms of the chip area and the latency. Also, authors themselves ac-
knowledge the fact, that the effective throughput of their approach
on the shortest frames is up to four times lower than presented
raw throughput results (so only up to 100Gbps). They propose to
allocate the whole parser multiple times in parallel to workaround
this issue, which would lead to even heavier resource price.

Similar pipeline architecture of parser is also proposed and elab-
orated by Kekely et al. in [3, 4]. Their approach achieves similar
raw throughput of around 400Gbps, but with considerably lower
resource usage and latency compared to [1]. This is achieved thanks
to hand-optimized implementation and not that heavy usage of
pipelining. Authors also acknowledge the issue of degraded ef-
fective throughput of their parser on the shortest frames. They
even propose a partial mitigation of the issue by unaligned frame
starts and data bus words shared between parts of two consecutive
frames. However, their approach is only sufficient for wire-speed
processing of up to 100Gbps (parsers with at most 512 b wide data
bus). Further scaling of throughput (bus width) leads to similar
throughput degradation as without this approach. Furthermore, in
the original papers, the generation of the parser from the high-level
description is not present at all. This is only supplemented later
by Benáček et al. in [2], where they describe and generate these
parsers using the P4 language.

The architecture of parser proposed in this paper is to some ex-
tent similar to pipelined approaches presented in the previous two
paragraphs as protocol stack processing is divided into multiple
parallel header parsers (columns in Fig. 1). However, the major con-
tribution of this paper is the extension of parallelism utilization in
the parser design towards another orthogonal dimension (packets
per cycle or rows in Fig. 1). This extension in conceptual design
is the key contribution that separates our parser from all previ-
ous works and enables us to achieve considerably higher effective
throughput leading to lossless wire-speed processing.

3 PACKET PARSER DESIGN
The following section provides a bottom-up description of parser’s
architecture concept. We start with the proposition of our data
convey bus protocol, more specifically the architecture of data word
that would enable transfer of multiple packets per clock cycle. After
that, the description of single protocol parser (analyzer) follows.
Finally, the top-level parser architecture following the conceptual
design from the Introduction is elaborated.

3.1 Data Convey Interface
The interface is used for transfer of packet’s data into and through
the whole parser. As already mentioned in the Introduction, it must
be possible to transfer multiple packets (or their parts) in one bus
word in order to retain the high ratio of effective to raw throughput
even at higher speeds (bus widths).

To enable transfer of multiple packets per clock cycle, we de-
fine the data bus word structure illustrated in Fig. 2. The figure
also shows an example of possible packet placements under the
proposed bus structure. One should notice that without the sup-
port of multiple packets per clock cycle, each of the depicted data
frames should occupy separate word on the bus (5 words would

Region

Block

Item

Word

Frame A Frame B

Frame C

Frame D Part of frame E

ItemItemItem

Block

Region

Block

ItemItemItemItem

Block

Figure 2: An example of possible packet placements under
the proposed data bus structure (for n = r = b = 2).

be required), but word sharing enables more dense packing (only 3
words are needed). Now for the proposed structure (bottom of the
Fig.), each data word of the bus consists of several regions. These
restrain the maximal number of packets per cycle as at most one
packet can start and one end (can be a different one) in each region.
Each region is further separated into blocks of data elements (items)
to constraint possible positioning of packet starts. All packets must
start aligned with the start of a block, but can end in any element
(e.g., frames A and B both end in the middle of a block).

General description of the proposed data word structure enables
for definitions of multiple buses with different parameters. We
formally describe them by the following four attributes:

• Number of regions (n) directly corresponds to the maximal
number of packets transferred in each word.

• Region size (r ) defines the number of blocks in each region,
thus affects the size of overhead for very short packets. Usage
of values that are powers of 2 is recommended here.

• Block size (b) states the number of elements in each start
alignment block, thus controls the alignment overhead for
frames. To simplify the processing complexity, usage of val-
ues that are powers of 2 is recommended.

• Element width (e) defines the size of the smallest distinguish-
able piece of data in bits. In networking, we always work
with bytes (octets of bits), but in general, other values can
be also utilized.

Using these main attributes, we derive bus word width in bits as:
dw = n × r × b × e . Now, we can also specify that illustration in
Fig. 2 shows a bus with parameters n = r = b = 2.

When considering the processing of Ethernet frames, the afore-
mentioned parameters of the bus should be configured to appro-
priate values. As already mentioned Ethernet operates with bytes
(octets) as the smallest data elements – therefore we let e = 8. Lower
layers of Ethernet (PCS/PMA layers) usually operate with frame
starts aligned at 8 B blocks (lanes) – so b = 8 is convenient. Size of
a region should correspond with the size of the smallest allowed
packets (64 B) as smaller regions would needlessly allow transfer
of more packets per word that is possible and on the other hand,
larger regions would reduce effective bus saturation for the shortest
packets – therefore we let r = 64/b = 8. Using these attribute values
(r = b = e = 8) and considering the shortest packets to be 64 B long,
the bus structure impose no more than b − 1 = 7 bytes of alignment

Session 8: Applications 2 FPGA’18, February 25–27, Monterey, CA, USA

251



T [Gbps] f [MHz] n [-] dw [b]
100 200 1 512
200 400 1 512
200 200 2 1024
400 400 2 1024
400 200 4 2048
800 400 4 2048
800 200 8 4096
1600 400 8 4096

Table 1: The throughput of selected combinations of bus at-
tributes and frequency.

overhead per packet. Furthermore, as lower layers of Ethernet op-
erate with larger overhead per packet (20 B of preamble and IFG),
our bus enables us to achieve effective throughput sufficient for
wire-speed processing of Ethernet packets even in the worst case.

In the previous paragraph, we left the value of attribute n unset,
because we want to use it to control the number of transferred
packets per clock cycle and also the total width of the bus. Thanks
to different values ofn and appropriately selected frequency, we can
easily scale the supported throughput of the parser. Tab. 1 shows
some considered configurations of the bus, where T stands for the
achievable throughput, f stands for the FPGA frequency, n is the
number of regions and dw is the total width of the data bus.

3.2 Simple Protocol Analyzers
The simple analyzers are the basic building blocks of our parser
architecture. Fig. 3 shows how they are internally arranged. Each
simple analyzer is able to start a processing of at most one packet per
clock cycle and extract data from a single specific protocol header.
From these, it computes control information for the next analyzer
in the processing pipeline. The input information necessary to
parse a single protocol header consists of: (1) packet data from the
corresponding and the previous region of the data bus, (2) offset of
the current word counted from the last start of packet, (3) type of
the expected protocol header and (4) offset of the current header
start. One should note that for n > 2, every simple analyzer does
not have to operate with the full data bus width, only with two of
its regions. The output information is similarly simple and includes:
(1) type of the next expected protocol, (2) offset of the next header
start and (3) extracted data of the current protocol header.

The Common logic block remains the same in all protocol an-
alyzers. It is used to extract correct bytes from a data bus that
corresponds to a protocol header based on given offsets. Only Pro-
tocol logic is specifically designed for each of the parsed protocols,
it computes offset and type of the next header in a protocol-specific
manner based on extracted data. As headers are not always aligned
to region boundaries, the analyzer has to look into two regions,
not just one. The data extraction is started when the end of a pro-
tocol header is detected in the current region of the data word. If
the current region is occupied by two ends of the same protocol
header, the second header is parsed by the protocol analyzer in the
next region. This solution allows parsing of each frame on the bus
without any stalling of the incoming data stream.
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3.3 Parser Top-Level Design
Our parser uses pipelining to achieve high working frequency and
thus high throughput. However, pipeline steps are optional and we
can control the trade-off between the frequency and used logic. For
example, if many pipelines are enabled, the frequency (throughput)
rises at the cost of longer latency and increased resources usage.
Therefore, by careful selection of pipeline positions in the parser,
we can find optimal configurations for any given use case.

Fig. 4 shows the example of parser pipeline with n = 4 and
support of Ethernet, VLAN, IPv4 and TCP parsing. The shown
pipeline arrangement corresponds to the conceptual matrix-like
schema from Fig. 1. Each pipeline stage (column) contains one kind
of protocol analyzers. The number of analyzers (in a pipeline stage)
is equal to the number of regions n. Each protocol analyzer contains
an inner bypass to solve the situations when the protocol is not
found in processed data (i.e., the protocol analyzer is skipped if the
currently processed packet does not contain the protocol which is
being analyzed by the protocol analyzer). Thanks to this feature,
the protocol analyzers can be arranged in a simple pipeline with a
constant latency. This property also makes adding of new protocols
into the pipeline very easy and it does not require any changes to
the current protocol analyzer’s architecture.

The shown arrangement contains two types of pipeline modules
- input pipeline and internal pipelines. The input (first) pipeline stage
also generates the initial control data for the first protocol analyzer
stage (expecting Ethernet header at offset 0). There is also a word
counter inside that counts the number of transferred words from
the last packet start (i.e., word offset value). Both pipeline types
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Figure 6: An example of protocol stack graph.

contain optional registers to achieve better timing and a logic for
the distribution of control data across corresponding regions. The
main task of the distribution block is to deliver control data to the
correct protocol analyzer (region) in the next stage.

Fig. 5 shows the distribution logic for a control data. New valid
control data are distributed to every following region until the start
of a new packet is detected. Notice that each pipeline has registers
to store data from the last region in the word because these data can
be necessary for parsing in the next clock cycle (i.e., the remainder
of header data is present in the following data word).

An example of the possible protocol stack that can be parsed by
our parser is shown in Fig. 6. The order of protocol analyzer stages
in the created pipeline directly depends on the selected protocol
stack. The planning of parser stages order that accommodates any
required stack is discussed in the next section of this paper, as we
intend to use the P414[8] language for an automatic generation of
packet parsers according to our proposed arrangement. This allows
us to describe support for different protocol stacks very easily.

4 P4 HIGH-LEVEL SYNTHESIS
P4: Programming Protocol-independent Packet Processors is a high-
level, platform-agnostic language. It represents a recent contribu-
tion to the broader idea of SDN and the SDN ecosystem. Its main
purpose is to provide a way to define packet processing functional-
ity of network devices, paying attention to reconfigurability, pro-
tocol independence and target (platform) independence. The idea

of programmable data plane in P4 language was introduced in [7].
There are two versions of P4 standard currently available: P414[8]
and P416[9]. The P414 is earlier language specification which syn-
tax was firstly introduced in 2014. The P414 standard is based on
the abstract forwarding model which is capable to process the P4
program. The main advantage of this approach is easy portability
to different platforms because the software tool is responsible for
mapping of the P4 program to the target architecture. The disad-
vantage comes from the property of easy portability. That is, we
cannot use the advanced functionality of a target because it is not
used in the abstract forwarding model (the pattern matching for
example). The P416 specification solves this problem directly in the
language, as it allows us to describe the advanced functionality in
the form of a library which is distributed with a network device.
The library is then used by a user in a P416 program. The following
text briefly introduces the P414 specification because we consider
it to be more currently known by the P4 community.

Using relatively simple syntax, the P414 allows to define five
basic aspects of packet processing:

• Header Formats describe recognized protocol headers.
• Packet Parser describes the (conceptual) state machine
used to traverse packet headers from start to end, extracting
field values as it goes.

• Table Specification defines how the extracted header fields
are matched in possibly multiple lookup tables (e.g., exact
match, prefix match, range search, and so on).

• Action Specification defines compound actions that may
be executed for packets.

• Control Program puts all of the above together, defining
the control flow mainly among the tables.

For our work, only the first two aspects of P414 are relevant.
Header format description may look like this:
header_type ethernet {

fields {
dst_mac : 48;
src_mac : 48;
ethertype : 16;

}
}

The description simply lists fields of the packet header and their
width in bits. The example above shows the situation for a static
header where the header length is the sum of lengths of all fields.
This can’t be done for protocols with a variable header length. The
P4 solves this situation by the header length definition in form of an
expression which uses fields from the protocol header declaration to
compute the header length. Header format description with variable
length may look like this:
header_type ipv6_ext {

fields {
next_hdr : 8;
total_len : 8;

}
length : (total_len + 1) * 8;
max_length : 1024;

}

Packet parser description constructs a parse graph using the
header format description, for example:
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header ethernet eth;
parser ethernet {

extract(eth);
switch(eth.ethertype) {

case 0x8100: vlan;
case 0x9100: vlan;
case 0x800: ipv4;

}
}

The example uses switch and extract statements. The extract
instructs the parser to examine input packets and look for the data
defined in the header. The parsed data is then used in the switch
statement to determine the next state (protocol) to process.

4.1 Mapping from P414 to Parser Architecture
The transformation process from P414 to VHDL was introduced by
Benáček et al. in [2]. The architecture of our parser is designed to
be compatible with the parser generator from the mentioned paper:
the parser consists of protocol analyzers and pipelines which form
the processing chain of given protocol stack. Therefore, we can
reuse the already presented algorithm for generation of our parser
pipeline. In cooperation with authors of [2], we managed to inte-
grate our parser into their generator, enabling it to create parsers
with much higher effective throughput. The following text briefly
introduces the transformation from P414 description to VHDL.

The main idea of the transformation is based on the topological
ordering of Parse Graph Representation (PGR). The PGR is defined
as an acyclic oriented graph (loop edges are allowed) from the P4’s
Packet Parser description. Each node of that graph represents one
protocol header and each edge represents the next parsed protocol.
A transition between nodes is based on a condition which is also
inferred from the P4’s Packet parser description. The PGR also
contains loop edges which are used for the representation of more
instances of the same protocol (e.g., two or more VLAN headers).
Each non-finite node contains the edge to a special Unknown state.
This state is not directly described in a P4 program but it is implicitly
required by the transformation process because it represents the
situation when none of the provided conditions match (in the cur-
rently processed protocol). The topological ordering of PGR nodes
is based on a mark which is identified by the depth-first search
(DFS) algorithm. The key for the ordering of nodes is to identify
the latest possible usage of the protocol in a PGR. After that, we
can connect all modules in any non-decreasing order, where: (1)
each node will be translated to VHDL and (2) every two nodes will
be divided by a pipeline module. The described planning algorithm
fulfills the following requirements:

(1) The planned structure of modules forms a pipeline (i.e., it
follows the processing flow of our parser in the protocol
stack dimension).

(2) Protocol at the end of the transition has to be processed after
the protocol at the beginning of the transition.

(3) Topologically ordered nodes (connected into the pipeline)
are able to cover all paths through the PGR and we are able
to parse any given combination of protocols because the
PGR is acyclic and node skipping is allowed.
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Figure 7: The relation between throughput and used re-
sources of the simple L2 parsers on the UltraScale+ FPGA.

5 RESULTS
In this section, we provide a comparison of our generated parsers
for two different protocol stacks:

• full – Ethernet, 4×VLAN, 4×MPLS, IPv4 or IPv6 (2×extension
headers), TCP or UDP

• simple L2 –Ethernet, IPv4 or IPv6 (2×extension headers),
TCP or UDP

Thanks to the description in P414, we are able to easily generate
parsers with the support of any protocols rather quickly. Of course,
too big and complicated protocol stacks may require huge amounts
of FPGA resources, but we will discuss it later in this section.

We described both mentioned protocol stacks in a P414 language.
Then, translated the P4 source and synthesized it with different
settings of data bus word width (512, 1024, 2048 and 4096 bits) and
configuration of enabled pipeline registers. In all cases, we use
data bus parameters that allow sufficient effective throughput for
wire-speed processing of even the shortest packets (r = b = e = 8
with varying n as stated in subsection 3.1). The synthesis results of
all the combinations form the state space of parsers with different
throughput, working frequency, latency and resource usage. All
values provided in the following text are after the synthesis for
the Xilinx Virtex-7 XCVH870T FPGA or the Xilinx UltraScale+
XCVU7P FPGA using the Xilinx Vivado 2017.2 design tool. The
achieved results were searched for sets of Pareto optimal parsers.
From these, we can pick the best-fitting parser configurations for
applications with different requirements. Notice that the FPGA
resource usage is expressed as a sum of required LUTs and registers
because it allows us to reflect the influence of enabled pipelines.
Furthermore, selected Pareto optimal parsers were also integrated
into our FPGA firmware and tested under real network conditions.

5.1 Simple L2 Protocol Stack
Figures 7 and Fig. 8 show the resource utilization and achieved
throughput of generated simple L2 parsers, the first shows the
UltraScale+ results and the second the Virtex7 results. Each point
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Figure 8: The relation between throughput and used re-
sources of the simple L2 parsers on the Virtex-7 FPGA.

0 200 400 600 800 1000 1200
0

20

40

60

80

Throughput [Gbps]

L
a
te

n
c
y
 [
n
s
]

512 Bits, UltraScale+

1024 Bits, UltraScale+

2048 Bits, UltraScale+

4096 Bits, UltraScale+

Figure 9: The relation between throughput and processing
latency of the simple L2 parsers on the UltraScale+ FPGA.

in the graphs represents one parser with a different combination
of parameters. The FPGA resource utilization linearly increases
with the achieved throughput in both graphs. In the case of the
UltraScale+ FPGA, we are able to reach the effective throughput
of well over 1 Tbps. Achieved throughputs for the Virtex7 FPGA
are notably worse while the used resources remain very similar.
This is because the same parsers reach lower frequencies when
implemented on the Virtex-7 compared to the UltraScale+ FPGA–
our results show the frequency to be 1.5 to 2 times lower.

Fig. 9 and Fig. 10 show the latency and throughput of different
settings of the simple L2 parser on the UltraScale+ and the Virtex-7
FPGA. Generally, the latency depends on the configured number
of enabled registers in pipeline stages and the working frequency.
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Figure 10: The relation between throughput and processing
latency of the simple L2 parsers on the Virtex-7 FPGA.
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Figure 11: The relation between resources and latency of the
simple L2 parsers on the UltraScale+ FPGA.

From the graphs, we can see that the latencies of our parsers are
increasing as the achieved throughput is rising. This is because
higher throughput is achieved by more extensive registering (i.e.,
more clock cycles between start and end of parsing). The latency
is again generally from 1.5 to 2 times better on the UltraScale+
because of the higher frequencies achieved.

Finally, Fig. 11 and 12 show the third point of view on the results –
the relation between latency and resource utilization of the simple
L2 parser on the UltraScale+ and the Virtex 7 FPGA. We can see
that although resources utilization rises considerably with data bus
width, the latency pretty much stays in the same boundaries.
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Figure 12: The relation between resources and latency of the
simple L2 parsers on the Virtex-7 FPGA.
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Figure 13: The relation between throughput and used re-
sources of the full parsers on the UltraScale+ FPGA.

5.2 Full Protocol Stack
The state space of the full protocol stack parser parameter combi-
nations is huge – 215 configurations for every bus width. Therefore
we synthesized only some hand-picked and randomly selected con-
figurations that account for about 1 % of all the possibilities.

Fig. 13 and Fig. 14 show the resource utilization and effective
throughput of the synthesized full parsers on the UltraScale+ FPGA
and the Virtex 7 FPGA. The full parsers are much larger because
they support more protocols than the simple L2 parsers. Therefore,
the resource utilization reaches nearly 2 times higher values here.
However, we still managed to achieve effective throughput of well
over 1 Tbps on the UltraScale+ FPGA. The results again show the
1.5 to 2 times lower achieved throughputs for the Virtex-7.
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Figure 14: The relation between throughput and used re-
sources of the full parsers on the Virtex-7 FPGA.
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Figure 15: The relation between throughput and processing
latency of the full parsers on the UltraScale+ FPGA.

Fig. 15 and Fig. 16 show the the latency and throughput rela-
tion of different configurations of full parsers implemented on the
UltraScale+ and the Virtex-7 FPGA. The full parsers have consid-
erably more pipeline stages, and therefore their latency is much
higher – nearly 4 times in some cases. Apart from that, we can see
the same trends as for the simple L2 parser. This is also true for
the relationship between latency and resource utilization of the full
parser on the UltraScale+ (Fig. 17) and the Virtex-7 FPGA (Fig. 18).

5.3 Summary
Fig. 19 shows sets of tested parsers with Pareto optimal results of
resource utilization to achieved throughput. From the graph, we
can clearly see the difference between the simple L2 parsers (full
line) and the full parsers (dashed line) in resource utilization – the
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Figure 16: The relation between throughput and processing
latency of the full parsers on the Virtex-7 FPGA.
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Figure 17: The relation between resources and latency of the
full parsers on the UltraScale+ FPGA.

full parsers are up to 2 times larger. Also, the difference between
target platforms (red for the UltraScale+ and blue for the Virtex-7
FPGA) is apparent. To compensate for the 1.5-2 times lower achieved
frequencies on Virtex-7 and to achieve the same throughputs, nearly
2 times larger parsers must be used compared to UltraScale+. The
stairs in the graphs are caused by the changing data bus width.

Fig. 20 shows Pareto optimal sets of parsers configurations in
latency to throughput space. In all cases, the latency increases with
the throughput. Again, we can see the positive effect of the higher
frequencies on the UltraScale+, where the latency is only 10 to 30 ns
for the simple L2 parsers and 30 to 50 ns for the full parsers.

To summarize, the measured results clearly show that the newer
family of Xilinx FPGAs enable to achieve considerably better results
of packet parsing implementation. Up to 2 times higher achieved
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Figure 18: The relation between resources and latency of the
full parsers on the Virtex-7 FPGA.
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Figure 19: Pareto optimal sets of parsers in throughput ×
used resources space.

frequencies allow selection of parsers with a narrower data bus
to conserve a significant portion of FPGA resources for a given
throughput requirement. Or, on the other hand, allow our parser
architecture to achieve effective throughput of over 1 Tbps using
wider buses. As the throughput holds even in the worst case sce-
nario, we are able to achieve an incredible processing rate of over
1 500Mpps when parsing the shortest Ethernet frames. Further-
more, we can see that the number of supported protocols does not
negatively affect the throughput (nor packet rate) of our parsers
thanks to the proposed pipelined architecture.

The effective throughput of our parser architecture is better than
any of the so far presented approaches to parsing in FPGAs. The
highest raw throughputs have been presented by Attig and Brebner
in [1] (AB parser) and by Kekely et al. in [3, 4] extended with auto-
matic parser generation by Benáček et al. in [2] (KB parser). Their
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Figure 20: Pareto optimal sets of parsers in throughput × la-
tency space.

Throughput Parser Utilization Latency
our 2.05 % 69 ns

over 100Gbps AB [1] 9.50 % 320 ns
KB [2] 1.94 % 45 ns
our 6.38 % 67 ns

over 400Gbps AB [1] 22.70 % 365 ns
KB [2] 5.87 % 56 ns

Table 2: Comparison with other state of the art approaches.

approaches are discussed at the end of the section 2. Results of both
of these parsers are presented for the Xilinx Virtex-7 XCVH870T
FPGA– the same as we used for our Virtex-7 measurements. Also,
both show results for similarly complex protocol stack as our full
version of the parser (AllStack for AB and full stack for KB parser).
Unfortunately, they use different metrics to describe the utiliza-
tion of FPGA resources (percentage of the FPGA vs. LUT-FF pairs).
Therefore, we transformed the utilization notation in the following
paragraph to represent the percentage of used slices from the total
available on the XCVH870T FPGA.

Under the specified common conditions, the AB parser is shown
to achieve raw throughput of up to 578Gbps and the KB parser of
up to 478Gbps. Our parser notably surpasses them both with the
maximum of 926Gbps. Furthermore, unlike the other approaches,
the high throughput of our parser is retained even when processing
the shortest packets. A comparison in terms of FPGA resources
utilization and latency for specific throughput requirements (100
and 400Gbps) is provided in the table 2. Compared to the AB parser,
our approach (highlighted) requires several times fewer FPGA re-
sources and operates with considerably smaller processing latency.
The KB parser is only a little bit better in both metrics than our
approach, but again, our approach guarantees sufficient throughput
even in the worst case while the KB parser does not. To overcome
this throughput limitation, the whole KB parser can be replicated
(e.g., 4× for 400Gbps) and traffic distributed between the copies.

But of course, this would considerably increase its utilization of
FPGA logic and processing latency (well above our results).

6 CONCLUSIONS
This paper introduces and elaborates a novel parser architecture
that enables processing of network traffic in current FPGAs at very
high throughput. Unlike virtually all other approaches in this area,
we do not focus solely on the raw achievable throughput but pay
increased attention to sustainment of the performance even in the
worst case –when parsing long bursts of very short packets. This
way, the proposed parser architecture is able to guarantee wire-
speed processing of network traffic at given link speed without
any packet losses. Furthermore, HDL implementation of the parser
can be automatically generated from a high-level description of a
protocol stack in P4 language.

Our measurements show, that even for rather complex protocol
stack the proposed parser concept enables to achieve high effective
throughput at a cost of just a few percent of resources available
in a single current FPGA. The achieved throughput is as high as
1.37 Tbps on the Xilinx UltraScale+ FPGAs and 926Gbps on the
Xilinx Virtex-7 FPGAs. Thanks to sustainment of the performance
even for the shortest 64 B Ethernet frames, a huge packet rate is
also reached – up to 2 038Mpps on the UltraScale+ resp. 1 377Mpps
on the Virtex-7. The achieved throughput and, more notably, packet
rate are considerably higher than in other published works. More-
over, they are well above the requirements for lossless wire-speed
processing of 1 Tbps Ethernet traffic.
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