
Memory Aware Packet Matching Architecture for
High-Speed Networks

Michal Kekely
FIT BUT

Božetěchova 2, 612 66 Brno
Czech Republic

ikekelym@fit.vutbr.cz

Lukáš Kekely
CESNET, a. l. e.

Zikova 4, 160 00 Prague 6
Czech Republic

kekely@cesnet.cz

Jan Kořenek
IT4Innovations Centre of

Excellence, FIT BUT
Božetěchova 2, 612 66 Brno

Czech Republic
korenek@fit.vutbr.cz

Abstract—Packet classification is a crucial operation for many
different networking tasks ranging from switching or routing to
monitoring and security devices like firewall or IDS. Generally,
accelerated architectures implementing packet classification must
be used to satisfy ever-growing demands of current high-speed
networks. Furthermore, to keep up with the rising network
throughputs, the accelerated architectures for FPGAs must be
able to classify more than one packet in each clock cycle. This can
be mainly achieved by utilization of multiple processing pipelines
in parallel, what brings replication of FPGA logic and more
importantly scarce on-chip memory resources.

Therefore in this paper, we propose a novel parallel hardware
architecture for hash-based exact match classification of multiple
packets per clock cycle with reduced memory replication require-
ments. The basic idea is to leverage the fact that modern FPGAs
offer hundreds of BlockRAM tiles that can be accessed (ad-
dressed) independently to maintain high throughput of matching
even without fully replicated memory architecture. Our results
show that the proposed approach can use memory very efficiently
and scales exceptionally well with increased record capacities. For
example, the designed architecture is able to achieve throughput
of more than 2 Tbps (over 3 000 Mpps) with an effective capacity
of more than 40 000 IPv4 flow records for the cost of only
366 BlockRAM tiles and around 57 000 LUTs.

I. INTRODUCTION

With the increasing capacity of network links, all network
devices and systems need to speed up their packet processing.
Current processors are not able to cope with network traf-
fic even on 100 Gbps links. In order to achieve wire-speed
processing with a throughput of 100 Gbps and more, network
systems have to utilize FPGA or ASIC technology. The
FPGA acceleration provides high performance and is highly
configurable (flexible) as well. The flexibility is essential
for any practical network system because traffic processing
is changing with the introduction of every new protocol,
application or service. Therefore, 40 Gbps network interface
cards with FPGAs started to be deployed to data centers
as hardware platforms for the acceleration [1] and will be
probably more and more frequently used in the future.

Network traffic processing architecture can be easily de-
scribed in the P4 high-level language [2] and then automati-
cally mapped directly to an FPGA hardware accelerator [3],
[4]. The P4 language has been designed at Stanford University
in order to enable protocol, vendor and target independent
definitions of packet processing. An integral part of the P4

language is the utilization of match/action tables as a basis to
control processing of each input packet.

The match/action tables perform various forms of packet
classification. During the classification, packets are matched
against a set of rules, which are usually defined by values,
ranges or prefixes of a few selected packet header fields.
Generally, the classification is a mathematical problem of a
multidimensional range search. Due to the ruleset size and
complexity of rules, it is very difficult to perform matching
at sufficient rate for wire-speed processing. Therefore, many
hardware architectures have been designed to accelerate packet
classification [5], [6], [7], [8], [9], [10], [11].

For 100 Gb network links, wire-speed throughput can be
achieved only if a new packet is processed every 6.7 ns, which
is only one clock cycle for 150 MHz clock. It means that
multiple packets have to be processed within each clock cycle
to achieve wire-speed 400 Gbps or 1 Tbps packet processing in
FPGAs. Usually, the processing speed is increased by utiliza-
tion of multiple parallel pipelines [12], [13], which require
multi-port memories or memory replication. Unfortunately,
both approaches significantly reduce throughput scalability at
400 Gbps or 1 Tbps speeds.

Therefore, we focus on the design of a new hardware
acceleration technique for packet classification with efficient
utilization of memory resources to achieve high-speed packet
processing. We introduce novel hardware architecture that is
able to scale the throughput of P4 match/action tables to
more than 2 Tbps (over 3 000 Mpps) on current FPGAs while
memory replication is significantly reduced compared to other
approaches. The proposed concept is compared with simple
pipeline/memory replication scheme and several possible op-
timizations are introduced.

II. RELATED WORK

Currently, there are many different approaches to packet
classification. Some of them focus on being as general as
possible, supporting packet classification in multiple differ-
ent dimensions and different types of match strength, such
as range lookups, ternary matching or longest prefix match
(LPM). However, the only way how to scale most of those
approaches for higher throughputs is to utilize multiple copies
of the same architecture operating in parallel.

Packet classification based on bit-parallelism (or bit vec-
tors, BV), proposed by Lakshman et al. [14], is a practi-
cal implementation that leverages the fact that rule updates
are infrequent compared to search operations. The algorithm
works in two stages. In the first stage, parallel searches are
carried out within each of the dimensions, resulting in bit
vectors. Each bit of these vectors corresponds to one record
in classification ruleset, therefore their width is given by the
number of rules used. A bit is set to one if a corresponding rule
is matched in given dimension and is reset to zero otherwise.
After the first stage, every bit vector represents the set of
all the rules matched in one dimension. Then the second
stage has to find an intersection of the sets matched within
single dimensions. Since these sets are represented as bit
vectors finding the intersection is reduced to bitwise AND
operation among the bit vectors. The main problem with this
approach is the width of bit vectors which increases with the
number of rules. Song et al. [15] presented architecture that
combines bit vector approach with TCAMs. The architecture
uses TCAMs for lookups within dimensions that require exact
or prefix matches and tree-bitmap implementation of the
BV algorithm for source and destination port lookups. This
architecture is optimized for classification based on network
flow 5-tuples (source IP address, destination IP address, source
port, destination port and L4 protocol), therefore it is not very
flexible and was not shown to have the ability to scale to
support different header fields.

Several of different approaches to supporting multiple di-
mensions are described in [16]. A grid of Tries extends
standard Trie structure to two dimensions however, it is
not easily extendable to more than two. General solution
using cross-products is more promising, but with no further
optimizations uses up way too much memory and resulting
cross-products are quite big. Other trie-based algorithms scale
poorly with increasing number of dimensions. Additionally,
these algorithms need great amounts of memory and cannot
be easily scaled to higher throughputs.

Another group of approaches to classification tries to utilize
architectures based on the construction of decision trees.
Many of these algorithms are not designed with FPGA im-
plementation in mind, however, some of them can be bent
to be efficiently mapped into FPGA structure. HiCuts [6] and
HyperCuts [7] are examples of such algorithms. The main idea
is to progressively cut the whole searched space represented
by classification dimensions into small enough parts (usually
representing 1 or several rules). Different heuristics can be
used to decide how to cut the space. But, resulting trees tend
to have many nodes. Additionally adding or removing rules
leads to the need of rebuilding the whole tree.

Prasanna et al. [17] pushed the idea of constructing decision
trees even further. They have observed that HyperCuts and
similar algorithms do not efficiently deal with rules that have
too much overlap with each other. In such cases, many rules
need to be duplicated and the resulting tree (and required
memory) can explode exponentially with the number of dimen-
sions. To combat this, a decision forest is introduced. Ruleset

is split into subsets and smaller decision trees are built for
each subset. Rules within each subset are chosen so that they
have as little overlap as possible and that they specify nearly
the same dimensions. Additionally, two other techniques are
used to optimize HyperCuts algorithm. Rule overlap reduction
stores rules that should be replicated in a list in each internal
node instead of actually replicating it into all the child nodes.
Precise range cutting is used to determine cutting points which
will result in the least number of rule duplications instead of
deciding number of cuts for a field.

Taylor et al. [5] introduced Distributed Crossproducting of
Field Labels (DCFL). This algorithm decomposes classifica-
tion into single dimensions and can be easily parallelized.
Moreover, it uses Bloom Filters [9] and labeling technique to
lower memory and logic requirements. The architecture was
shown to be scalable even to higher throughputs [18], but only
by using multiple copies of the memories. Because of this
key features, the architecture can be duplicated to increase
throughput while still maintaining reasonable usage of on-chip
memories and logic. This idea was pushed further to build
scalable architecture through memory duplication in [18].

In many cases, exact match packet classification is suffi-
cient. This is prevalent mainly when IP flows are concerned.
Effective approaches to exact match packet classification are
usually based on hash tables. A sophisticated way of imple-
menting hash tables is cuckoo hashing principle [19]. The
main idea of cuckoo hashing is to increase the efficiency
of memory utilization in the hash table by multiple parallel
hash functions/tables. Each table uses one of the different
hash functions for indexing. This means that if a new element
cannot be inserted into the first table because of a conflict with
an already existing item, it can still be inserted into one of the
other tables through a different hash function. Even when the
element cannot be inserted into any of the tables it can still be
inserted by force, pushing out one of the previous occupants.
The previous occupant can then be reinserted into the tables
in the same manner. Using more tables and reinsertions allows
the cuckoo hashing to keep the high lookup speed while
decreasing the number of unresolvable conflicts and therefore
increasing the effective capacity.

The cuckoo hashing approach is well suited for hardware
because each hash table can work in parallel [20], [21]. These
published implementations offer throughputs up to around only
100 Gbps, while in this paper we aim at achieving over 1 Tbps.
Cuckoo hashing based packet classification is also effectively
used to monitor or analyze network traffic in the idea of
Software Defined Monitoring (SDM) [22]. Here, an external
memory is utilized and achieved throughput is again shown to
be sufficient only for up to 100 Gbps.

III. ARCHITECTURE

Our main goal is to design an architecture for exact match
packet classification that can accommodate high throughputs
of multiple terabits per second. One way to achieve this
would be to increase the clock frequency of basic cuckoo
hashing architecture. This is possible to do only until a certain

Fig. 1. The memory architecture of simple replication approach.

point, after which the frequency cannot be further increased
due to the limitations of used FPGA technology. The other
way to increased throughput is through a design of the new
architecture of cuckoo hashing that can carry out more than
one rule lookup per each clock cycle. This translates to more
than one memory access per clock cycle to each utilized hash
table. Current Xilinx FPGAs use BlockRAM tiles as the main
type of on-chip memories. These have 2 independent ports,
therefore we can easily perform 2 memory accesses per clock
cycle with no additional cost.

In order to enable more than 2 accesses per clock cycle,
we can simply replicate the memories. This is illustrated
for 4 accesses in the figure 1. Two of the accesses are
mapped to one copy of the memory and two are mapped
to the other copy. This approach is not particularly efficient
because we need to double the memory in order to achieve
doubled throughput. However, we can leverage the internal
structure of FPGAs and their memory tiles. A single copy
of a larger memory is internally usually composed of more
than one BlockRAM tile (B blocks). Each BlockRAM on
current Xilinx chips [23] can be used as 36 b wide dual port
memory with 1 024 entries. Larger memories are constructed
utilizing multiple BlockRAMs organized into several rows and
columns. For example, figure 1 corresponds to data width of
up to 108 b and 4 048 entries.

A. Proposed Approach

If we already have more than one row of BlockRAMs
in each table we should be able to do more than just two
memory accesses per clock cycle. We can, in fact, ideally
do two accesses per cycle independently to each of the
individual rows. This fact can be leveraged to optimize the
previously mentioned simple replication approach. We propose
an FPGA architecture of cuckoo hashing shown in figure 2.
The proposed approach is also applicable to any other kinds
of hash tables, but we choose cuckoo hashing as it is the most
effective existing hashing scheme.

The figure shows the architecture able to carry out up to
2 parallel lookups per cycle with cuckoo hashing using 3
different hash functions/tables. The memory blocks used here
are similar to the blocks from figure 1 – meaning that they in-
ternally consist of multiple independent rows of BlockRAMs.

Fig. 2. The top-level architecture of the proposed optimization.

Hash functions are computed for each lookup key (H blocks)
and are connected to a distribution logic (D blocks). There
is one distributor block for each hash function/table of the
cuckoo hashing. The distributor consists primarily of logic that
maps the requested memory accesses into corresponding table
rows given by a few most significant bits of their hash values
and distributes them onto available BlockRAM ports for each
of these rows. On the other side, it correctly forwards read
data from each memory row and port to the corresponding
comparison logic (= and OR blocks). The basic idea is to
replicate memory fewer times than in the case of a simple
approach (fewer replicas than required parallel packet lookups)
as we can perform multiple accesses per clock cycle simply
by hash functions that are pointing into different table rows.
Additionally, memory can also be replicated here to enable
more than two parallel access ports for each row.

So, the distributor blocks determine which row of the
BlockRAMs is accessed by each lookup and sets the control
logic in a way to carry out all the lookups that are not in
conflict with each other. Conflicts, in this case, mean that
there are more lookups wanting to access the same row of one
table than there are available access ports in this row. Note
that since the memories can still be replicated the number
of available access ports might be higher than two. All the
lookups that could not be carried out in the first cycle will
be carried out in consecutive cycles until all of the requested
lookups are finished. This means that the lookup of all of the
inputs might take more than one cycle. However, the basic
idea is that the relative number of occurring conflicts (or
rather number of additional cycles needed) is pretty low for
higher numbers of memory rows, thus reducing throughput
only slightly. Compared to that, the saved memory resources
thanks to no or weaker memory replication are considerable.

For example, consider a case where four lookups each clock
cycle are needed and there are four rows of BlockRAMs
with only two ports each (meaning no memory replication).
There are no conflicts unless at least three of the four lookups
need to access the same row. In case of the conflict, two
of the conflicting accesses can still be carried out together
with all others that are not in conflict. The last one or two

accesses from the conflicting group has to be carried out in
the next cycle. Even if there is a conflict every time, we
still achieve the same throughput as the simple architecture
with the same memory requirements (replication factor). In
the example without replication, we would do four lookups in
two clock cycles which is the same as the simple approach
with two lookups each cycle. This shows that at worst the
proposed solution is on par with the simple solution in terms
of both memory and throughput. However, the key idea is that
the conflicts do not occur each time and are actually pretty
infrequent (20 % conflict chance in this example), therefore
the effective achieved throughput is considerably better.

It is also important to note that we can easily achieve inde-
pendence in the conflict handling for each parallel hash table
used in the cuckoo hashing. The distributor corresponding to
a single hash table does not need to wait until all the other
distributors carried out all their lookups. Instead, there are
small input and output buffers that are used to synchronize the
results (denoted by squares on corresponding connections in
figure 2). This makes the architecture a lot more efficient as the
throughput is not governed by the probability of no conflicts
in all of the tables together but rather by the probability that
there are no conflicts in every single table independently. This
independent probability is a lot lower especially when a higher
number of parallel hash tables are used.

Of course, the described buffers consume some additional
FPGA resources. Also, the distributors themselves introduce
some logic overhead compared to simple replication approach.
In the simple approach, there is a dedicated port for each
parallel lookup, therefore hash functions (inputs) and compar-
ison logic (outputs) can be directly connected to appropriate
memories without the distributors. The core of each distributor
is a planner, that can evaluate and resolve access conflicts –
basically a group of encoders and decoders to select a valid
access plan for each cycle. The planner controls two columns
of multiplexers: the first to route planed access requests to cor-
rect memory rows/ports and the second to pair read data with
their corresponding requests. Additional registers are used to
thoroughly pipeline the distributors for better frequency and to
correctly synchronize all operations together. The total FPGA
logic overhead of the distributors and buffers is expected to be
manageable compared to complex hashing blocks which are
usually considerably large and contain critical paths.

The described architecture can be optimized for better
throughput even further as during conflicts the available access
ports of memories are currently not fully utilized in the added
clock cycles. For example, if only one lookup cannot be
carried out in the first cycle it has to be carried out in the
second (additional) one. Reserving one full clock cycle just for
one extra lookup is inefficient. A more reasonable approach
would be to combine the extra lookup cycles with some of the
lookups needed for the next inputs. While this cycle sharing
increases the throughput by a small percentage it requires a
lot more complex distributor and buffer architectures. Because
of this the rest of the paper deals with the architecture without
such optimization.

B. Analysis of Conflicts

It is possible to mathematically analyze the probability of
conflict occurrence and derive the achievable throughput of
the proposed architecture with given parameters. There are
3 main parameters of the architecture when it comes to the
probability of conflicts: the number of rows of BlockRAMs in
each table r, the number of parallel lookups per clock cycle
l corresponding to the number of inputs, and the number of
available access ports for each table row p.

The probability that a single lookup needs to access one
specific selected row and the probability that it needs to access
any other row are complementary:

ps(r) =
1

r
(1)

pns(r) =
r − 1

r
(2)

First of all, for any given n the probability that exactly n
lookups out of total l in one cycle need to access one selected
row out of r rows can be computed as a product of: the
probability that selected n lookups access selected row, the
probability that all the other l − n lookups do not access this
row, and the number of combinations by which it is possible to
position those n lookups into all l. The appropriate equation:

ps(n, l, r) = (ps(r))
n ∗ (pns(r))l−n ∗

(
l

n

)
=

(
1

r

)n

∗
(
r − 1

r

)l−n

∗
(
l

n

) (3)

To get the probability that any of the rows will have exactly
n lookups mapped onto it we simply multiply the previous
probability from equation 3 by the number of rows:

pa(n, l, r) = ps(n, l, r) ∗ r

=

(
1

r

)n−1

∗
(
r − 1

r

)l−n

∗
(
l

n

) (4)

Now to approximate the probability that more than n
lookups out of all l in one cycle need to access the same row
out of r we can simply sum the probabilities from equation 4
for all values higher than given n:

pc,a(n, l, r) =

l∑
i=n+1

pa(i, l, r)

=

l∑
i=n+1

(
1

r

)i−1

∗
(
r − 1

r

)l−i

∗
(
l

i

) (5)

This sum does not account for the fact that solution spaces
described by some of the summed probabilities have non-
empty intersections with one another (some conflict variants
are counted multiple times). To counter this fact we would
have to compute probabilities that exactly n lookups will be
mapped onto the same row while there is no other row with n
or more lookups mapped onto it. This leads to exponentially
more complex nested sums. However, the approximate results
achieved by the equation 5 are always higher than the actual

results, which means they would actually give us more pes-
simistic results for the throughput. Additionally this approx-
imation is very precise for results under configurations that
are the most interesting for us. For example, it is absolutely
precise if p is higher or equal to l/2, since in this case, it is
impossible for two different rows to have more than p accesses
mapped at the same time.

The equation 5 essentially approximates the probability that
there will be a conflict for architecture with l lookups, r rows
of BlockRAMs and p=n ports for each row. However, not
all conflicts are equal when it comes to their effect on the
achieved throughput. For example, if p = 2 and 6 lookups
need to access the same row it takes 3 cycles to carry out all
of all them, while when 4 lookups need to access the same
row only 2 cycles are needed. To extend our equations and
reflect this we use a weighted sum:

cw,c(n, l, r) =

l∑
i=n+1

w(i, n) ∗ pa(i, l, r) (6)

The weight w here represents the number of cycles needed to
resolve the conflict in each case:

w(i, n) =

⌈
i

n

⌉
(7)

Finally we can do one last thing to get how many times more
cycles (on average) are needed compared to the case without
any conflicts. The equation 6 sums only weighted probabilities
of conflicts. We need to add also the probability that there
will be no conflict. Weight corresponding to no conflict is
obviously 1 since even when there is no conflict we still need
one clock cycle to carry out all the lookups. So the coefficient
that gives us the relation between needed cycles (achieved
throughputs) is computed as follows:

c(n, l, r) = cw,c(n, l, r) + (1− pc,a(n, l, r)) (8)

In conclusion, the proposed optimized architecture with l
lookups, r BlockRAM rows, and p ports can achieve through-
put equivalent to an average of m lookups per cycle, where:

m =
l

c(p, l, r)
(9)

Thanks to the previously mentioned buffers there is no need
to include number of hash functions (parallel hash tables) into
our computations. Logic and memories corresponding to each
hash operate independently of one another and their results
are only synchronized afterward via buffers. This means that
if there is a collision in memory tied to one hash another hash
with no collision does not have to wait.

IV. RESULTS

The results in this section are obtained through the pre-
viously mentioned mathematical analysis and are confirmed
through experiments with implemented architecture. Measure-
ments are based on design synthesis for the Xilinx UltraScale+
XCVU9P FPGA [23] using Vivado 2017.4 tool. The archi-
tecture is able to achieve working frequency (Fmax) of more

Hash functions Rows of BRAMs Total capacity Effective capacity

3 1 3 072 2 765

3 2 6 144 5 530

3 4 12 288 11 059

3 8 24 576 22 118

3 16 49 152 44 236

4 1 4 096 3 891

4 2 8 192 7 782

4 4 16 384 15 565

4 8 32 768 31 130

4 16 65 536 62 260

TABLE I
CAPACITIES OF CUCKOO HASHING FOR DIFFERENT PARAMETERS.

than 400 MHz for every evaluated configuration. Therefore, the
following throughput results are all shown for 400 MHz clock
frequency. All the cases used 104 b wide key that is sufficient
for the classification of standard IPv4 flows (5-tuple) and 32 b
wide arbitrary data (action). There are 3 main parameters
that are worth exploring in the results – resource requirements
(BRAMs, LUTs), achievable throughput (lookups per cycle,
Mpps, Gbps), and effective rule capacity.

Table I shows different capacities of cuckoo hashing ar-
chitecture based on the number of hash functions and the
number of BlockRAM rows for each table (each row has 1 024
items). Total (theoretical) capacity and achievable effective
(mean) capacity are shown. For three functions the efficiency
of capacity utilization is around 90 %, for four it is around
95 %. This is consistent with similar measurements in [21].
Table I is primarily used to illustrate cuckoo hashing capacities
that are considered in the evaluation.

Figure 3 captures the relation between throughput and mem-
ory requirements of architectures with three hash functions in
different configurations. Lines in the graph represent through-
put and memory requirements of simple memory replication
approach for a different number of BlockRAM rows used.
Again, the number of rows is directly tied to the capacity
of the architecture as shown in table I. These results form a
baseline for evaluation of the designed optimization.

Each point in the graph shows results for a different configu-
ration of the proposed memory optimized approach. The color
of a point represents the number of BlockRAM rows used
(the capacity of the architecture) and its shape represents how
many lookups (number of inputs l) the architecture supports.
Our approach is clearly better in terms of used memory for
each given throughput achieved as all points are below lines
of appropriate color. Obviously, when there is only one row of
BlockRAMs (black line) there is no possibility to employ our
optimization and gain something. However, even when there
are only 2 rows of BlockRAMs (light blue) we can already
achieve better results. For example, using an architecture with
10 lookups (full circles) we can achieve 48.5 % increase in
throughput without any memory duplication.

The results tend to get even better when using more rows of
BlockRAMs. This is expected behavior since more rows mean

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2 3 4 5 6 7 8 9 10

B
R

A
M

Throughput [lookups per cycle]

1 row
2 rows
4 rows

8 rows
16 rows

4 lookups

8 lookups
10 lookups

Fig. 3. The relation between memory and throughput for 3 hash functions.

more chance for the lookups to be better spread out between
different rows, thus the probability of conflicts decreases. In
case of 16 BlockRAM rows (pink), it is possible to achieve
nearly twice the throughput without any memory duplication
even when using the architecture with only 4 lookups (cross).
If we use architectures with 8 (star) or 10 (full circle) lookups
the speedup is even further amplified and nearly 7 or 7.5 times
higher throughput can be achieved with no additional memory
requirements. Additionally, with two times replicated memory,
we can achieve nearly the full throughput of 10 lookups per
cycle. This means that we can achieve 99.7 % of throughput
with only 40 % of used memory.

The number of hash functions has no effect on the efficiency
of the proposed optimization approach (only on the efficiency
of cuckoo hashing itself). This can be clearly seen by com-
paring figure 3 with figure 4. Figure 4 shows the relation of
utilized memory and achieved throughput for different archi-
tecture configurations with 4 hash functions. Graphs shown
by figures 3 and 4 are pretty much the same only shifted
slightly along the y-axis. The increase in memory requirements
is offset by the higher capacity of the architectures (see table I).

Figures 3 and 4 might suggest that architectures with more
lookups (inputs) are always better. However, this is not the case
when it comes to utilized on-chip logic resources. Architecture
with more lookups needs more hash function computations,
more buffers, and larger distributors. The relation between on-
chip logic, more specifically required LUTs, and throughput
for 3 hash functions is illustrated by figure 5. The graph
shows that if we use an architecture with for example 10
lookups (pink) the logic requirements go up together with
the level of memory duplication and the achieved throughput.
Memory-optimized architecture with 10 lookups, 16 rows and
4 memory ports (two memory replicas) achieves 99.7 % of
throughput requiring only 40 % of memory at a cost of 466 %
of LUTs compared to the simple approach with 10 lookups

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 3 4 5 6 7 8 9 10

B
R

A
M

Throughput [lookups per cycle]

1 row
2 rows
4 rows

8 rows
16 rows

4 lookups

8 lookups
10 lookups

Fig. 4. The relation between memory and throughput for 4 hash functions.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 2 3 4 5 6 7 8 9 10

LU
T

Throughput [lookups per cycle]

1 row
2 rows
4 rows

8 rows
16 rows

4 lookups

8 lookups
10 lookups

Fig. 5. The relation between used logic and throughput for 3 hash functions.

and 16 rows. From a different point of view, the optimized
architecture with 10 lookups, 2 rows and 2 memory ports (no
replication) achieves 48.5 % increased throughput requiring the
same memory at a cost of 244 % increase in LUTs compared
to the simple approach with 2 lookups and 2 rows. However,
we argue that the decreased memory requirements or increased
throughput, depending on the way we look at it, is a favorable
trade-off for the increase in on-chip logic. In many cases,
even the increased logic requirements are still feasible for
current FPGAs (only a few percents of the total available),
while increasing the throughput without the need to replicate
memories can prove to be more critical.

In order to better illustrate the impact of the proposed
memory optimization on the achieved results, we analyze them
from different views. First of all, let’s take a look at the best
results that we can achieve if we want to reach a given minimal

 0

 100

 200

 300

 400

 500

 600

 700

2 4 8 16

B
R

A
M

Rows of BlockRAMs

simple
best proposed

adjusted simple

Fig. 6. Memory requirements comparison when achieving at least 800 Gbps.

throughput. Figures 6, 7, 8 illustrate the memory requirements
of the best configurations of the proposed approach (green)
compared to the baseline given by the simple memory replica-
tion (red) when we want a throughput of 800 Gbps, 1.6 Tbps
or 2.4 Tbps. The best configuration is the one that requires
the least memory while still satisfying the minimal through-
put threshold. This obviously means that actually achievable
throughputs of compared simple and optimized configurations
are not the same. For better comparison, we can leverage the
fact that memory of the simple approach scales linearly with
throughput and adjust the required memory to the point where
the simple approach has exactly the same throughput as the
optimized (blue). We can see that our approach is more and
more effective as the total capacity of the cuckoo hash table
rises. For 2 rows it is possible to achieve the same throughput
as simple replication with somewhere between 67 % and 80 %
of required memory (after adjustment), while for 16 rows only
between 25 % and 40 % of memory is needed. To be more
precise the most significant factor that governs how much
memory can be saved is the ratio between the number of
rows (capacity) and required throughput (parallel lookups).
The higher the capacity the better the results become as the
lookups can be spread among more rows.

On the other hand, we can analyze the achievable through-
put for a given number of BlockRAMs (e.g. 200) that we have
available. The best cases of the proposed optimized approach
are obtained when using architectures with 32 lookups. This
is chosen mainly because for 2 rows of BlockRAMs the
memories can be duplicated up to 8 times in the simple solu-
tion, which means 16 lookups. Therefore to obtain reasonable
results we chose architectures with at least twice as much
lookups. The results are shown in figure 9. An interesting thing
can be observed: even as the number of rows (and therefore
capacity) increases and the duplication factor decreases the
throughput of the proposed approach stays relatively the same.

 0

 100

 200

 300

 400

 500

 600

 700

 800

2 4 8 16

B
R

A
M

Rows of BlockRAMs

simple
best proposed

adjusted simple

Fig. 7. Memory requirements comparison when achieving at least 1.6 Tbps.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

2 4 8 16

B
R

A
M

Rows of BlockRAMs

simple
best proposed

adjusted simple

Fig. 8. Memory requirements comparison when achieving at least 2.4 Tbps.

This is caused by the fact that while the number of copies
of memories (memory access ports) decreases it is balanced
by a better spreading of all the lookups between more rows
of independently operating BlockRAMs. If we choose other
numbers of BlockRAMs the observed trend is pretty similar.

V. CONCLUSION

The paper presents novel memory efficient hardware ar-
chitecture for exact match packet classification at very high
speeds (400 Gbps and beyond) using the cuckoo hashing algo-
rithm. The proposed architecture offers an easily configurable
tradeoff between achieved throughput, required memory, uti-
lized logic, and rule capacity. With the proposed optimization,
it is possible to implement exact match packet classification
for large rulesets operating at very high throughputs with
efficient utilization of available memory. There are several

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

2 4 8 16

Th
ro

ug
hp

ut
 (G

bp
s)

Rows of BlockRAMs

simple best proposed

Fig. 9. Maximal throughputs of evaluated approaches for 200 BlockRAMs.

ways in which the architecture can be used – either to max-
imize throughput and rule capacity on devices with limited
memory resources or to minimize memory requirements while
satisfying needed rule capacity and throughput.

Experimental results with the proposed simple and opti-
mized architectures of cuckoo hashing show few interesting
facts. First of all the optimized architecture is considerably
more memory efficient than a simple replication approach.
With correct configuration, we are able to achieve 99.7 %
of throughput for only 40 % of required memory compared
to the simple approach. If the required rule capacity of
the architecture is high enough our optimized approach is
generally able to retain the same throughputs with only 25-
40% of memory utilized compared to the simple solution. This
way we can achieve an unprecedented throughput of 2.4 Tbps
and effective capacity of over 44 000 IPv4 5-tuple (flow) rules
for the cost of only 366 BRAMs. The only downside of the
proposed optimized architecture is increased requirement of
on-chip logic. However, we argue that the benefits of decreased
memory requirements and increased throughput outweigh this
issue in most practical cases.

ACKNOWLEDGMENTS

This research is supported by the project Reg. No.
CZ.02.1.01/0.0/0.0/16 013/0001797 by the MEYS of the
Czech Republic; the IT4Innovations excellence in science
project IT4I XS – LQ1602; and by the Ministry of the In-
terior of the Czech Republic projects VI20172020064 and
VI20152019001.

REFERENCES

[1] A. Caulfield, E. Chung, A. Putnam, H. Angepat, J. Fowers, M. Hasel-
man, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill,
K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger, “A cloud-scale acceleration architecture,” in Proceedings of
the 49th Annual IEEE/ACM International Symposium on Microarchitec-
ture. IEEE Computer Society, October 2016.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[3] P. Benáček, V. Puš, and H. Kubátová, “P4-to-VHDL: Automatic gen-
eration of 100 Gbps packet parsers,” in 2016 IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), May 2016, pp. 148–155.

[4] P. Benáček, V. Puš, H. Kubátová, and T. Čejka, “P4-to-VHDL: Au-
tomatic generation of high-speed input and output network blocks,”
Microprocessors and Microsystems, vol. 56, pp. 22 – 33, 2018.

[5] D. Taylor and J. Turner, “Scalable packet classification using distributed
crossproducing of field labels,” in 24th Annual Joint Conference of the
IEEE Computer and Communications Societies, 2005, pp. 269–280.

[6] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” in Proc. Hot Interconnects, 1999.

[7] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classifica-
tion using multidimensional cutting,” in Conference on Applications,
technologies, architectures, and protocols for computer communications.
New York, NY, USA: ACM, 2003, pp. 213–224.

[8] H. Lee, W. Jiang, and V. K. Prasanna, “Scalable High-Throughput
SRAM-Based Architecture for IP Lookup Using FPGA,” in Interna-
tional Conference on Field Programmable Logic and Applications, 2008.

[9] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood, “Fast packet
classification using Bloom filters,” in ANCS ’06: Proceedings of the
2006 ACM/IEEE symposium on Architecture for networking and com-
munications systems. New York, NY, USA: ACM, 2006, pp. 61–70.

[10] V. Puš and J. Kořenek, “Fast and scalable packet classification using
perfect hash functions,” in FPGA ’09: Proceedings of the 17th inter-
national ACM/SIGDA symposium on Field programmable gate arrays.
New York, NY, USA: ACM, 2009.

[11] J. Kořenek, V. Puš, and J. Blaho, “Memory optimization for packet
classification algorithms,” in Proceedings of the 5th ACM/IEEE Sym-
posium on Architectures for Networking and Communications Systems,
ser. Association for Computing Machinery. Association for Computing
Machinery, 2009, pp. 165–166.

[12] H. Le and V. K. Prasanna, “Scalable Tree-based Architectures for
IPv4/v6 Lookup Using Prefix Partitioning,” IEEE Trans. Comput.,
vol. 61, no. 7, pp. 1026–1039, Jul. 2012, ISSN 0018-9340.

[13] Y. Qi, J. Fong, W. Jiang, B. Xu, J. Li, and V. Prasanna, “Multi-
dimensional packet classification on fpga: 100 gbps and beyond,” in
2010 International Conference on Field-Programmable Technology, Dec
2010, pp. 241–248.

[14] T. V. Lakshman and D. Stiliadis, “High-speed policy-based packet for-
warding using efficient multi-dimensional range matching,” SIGCOMM
Comput. Commun. Rev., vol. 28, no. 4, pp. 203–214, 1998.

[15] H. Song and J. W. Lockwood, “Efficient packet classification for network
intrusion detection using FPGA,” in FPGA ’05: Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-programmable gate
arrays. New York, NY, USA: ACM, 2005, pp. 238–245.

[16] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” SIGCOMM Comput. Commun. Rev.,
vol. 28, no. 4, pp. 191–202, 1998.

[17] W. Jiang and V. K. Prasanna, “Scalable packet classification on FPGA,”
IEEE Transactions on VLSI Systems, vol. 20, no. 9, September 2012.

[18] M. Kekely and J. Korenek, “Packet classification with limited memory
resources,” in 2017 Euromicro Conference on Digital System Design.
Institute of Electrical and Electronics Engineers, 2017, pp. 179–183.

[19] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in Algorithms - ESA 2001,
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2001, vol. 2161, pp. 121–133.

[20] A. Kirsch, M. Mitzenmacher, Y. Baohua, X. Yibo, and L. Jun,
“Using a queue to de-amortize cuckoo hashing in hardware,”
2007. [Online]. Available: http://www.eecs.harvard.edu/∼michaelm/
postscripts/aller2007.pdf

[21] L. Kekely, M. Žádnı́k, J. Matoušek, and J. Kořenek, “Fast lookup for
dynamic packet filtering in FPGA,” in 17th IEEE Symposium on Design
and Diagnostics of Electronic Circuits and Systems. Warszaw, Poland:
IEEE Computer Society, 2014, pp. 219–222, iSBN: 978-1-4799-4558-0.

[22] L. Kekely, J. Kucera, V. Pus, J. Korenek, and A. V. Vasilakos, “Software
defined monitoring of application protocols,” IEEE Trans. Comput.,
vol. 65, no. 2, pp. 615–626, Feb. 2016.

[23] Xilinx, UltraScale and UltraScale+ FPGAs Packaging and Pinouts,
Xilinx Inc., 2016, UG575.

