
P4-to-VHDL: Automatic Generation of 100 Gbps

Packet Parsers

Pavel Benáček, Viktor Puš

CESNET a.l.e.

Zikova 4,160 00 Prague

Czech Republic

Email: benacek,pus@cesnet.cz

Hana Kubátová

Faculty of Information Technology

Czech Technical University in Prague

Thákurova 9,16000 Prague 6

Czech Republic

Email: hana.kubatova@fit.cvut.cz

Abstract—Software Defined Networking and OpenFlow offer
an elegant way to decouple network control plane from data
plane. This decoupling has led to great innovation in the
control plane, yet the data plane changes come at much slower
pace, mainly due to the hard-wired implementation of network
switches. The P4 language aims to overcome this obstacle by
providing a description of a customized packet processing func-
tionality for configurable switches. That enables a new generation
of possibly heterogeneous networking hardware that can be run-
time tailored for the needs of particular applications from various
domains.

In this paper we contribute to the idea of P4 by presenting
design, analysis and experimental results of our packet parser
generator. The generator converts a parse graph description of P4
to a synthetizable VHDL code suitable for FPGA implementation.
Our results show that the generated circuit is able to parse
100 Gbps traffic with fairly complex protocol structure at line
rate on a Xilinx Virtex-7 FPGA. The approach can be used not
only in switches, but also in other appliances, such as application
accelerators and smart NICs. We compare the generated output
to a hand-written parser to show that the price for configurability
is only a slightly larger and slower circuit.

I. INTRODUCTION

OpenFlow [1], as the most popular embodiment of the ideas

of Software Defined Networking, provides a way to fill the

match tables of switches at runtime. The OpenFlow specifica-

tion defines exactly which protocols must be supported by the

switches to support all matching features. At the same time,

it is not possible to change that set of protocols – switches’

packet parsers are fixed. (Or at least they appear so to the

OpenFlow controller.)

P4: Programming Protocol-independent Packet Processors

[2], [3] makes a step forward and evades the limitation of

fixed protocol set. It defines a way to configure the packet

parsing functionality of switches at runtime. It is envisioned

that a P4-capable switch translates this platform-independent

parser description into a representation that fits the actual

hardware resources of the switch. Such representation may

include a code for a general or specialized processor, an

FPGA firmware, an advanced ASIC configuration or other

computational platforms.

Since P4 is a visionary and relatively new concept, there are

no commercially available switches supporting it at the time

of writing this paper (December 2015). We contribute towards

the vision of P4 by designing and evaluating a generator of

high-speed packet parser suitable for FPGAs. The generator’s

output is a synthetizable VHDL code that performs packet

parsing as defined by the P4 program. Its internal structure

is inspired by that of a parser hand-written by a skilled HDL

programmer and therefore there is only a small difference in

chip area and frequency. Parser’s data width and number of

internal pipeline stages are configurable parameters, so that the

parser can be tuned for particular throughput, area and latency

constraints. Since we envision that P4 may span applications

besides network switches, we believe that our work can be

used in other appliances, such as application accelerators,

smart NICs and various network security devices.

The rest of the paper is organized as follows: Section II

presents other papers related to our work. Section III provides

more details about the P4 language aspects that are relevant for

this work. Section IV describes the design of the generator as

well as the structure of parsers it generates. Section V provides

results of our generator and compares them to a hand-written

parser. Finally, section VI draws conclusions from the results.

II. RELATED WORK

NetPDL [4] is an XML-based language for packet header

description. Its capabilities are similar to header formats and

packet parser description in P4. Similarly, Attig and Brebner in

[5] present the PP language, which serves for the description

of packet headers and parse graphs. They also demonstrate a

compiler from PP to FPGA representation.

Both approaches lack description of the packet processing

functionality that follows after packet parsing. In order to allow

seamless continuation of our work in that direction, and due

to recent good reception of P4 in the SDN community, we

have chosen P4 as our starting point.

Gibb et al. in [6] present a detailed design of fixed and

configurable packet parsers for ASICs. Reconfigurable Match

Tables (RMT) [7] provide a design of a complete packet pro-

cessing functionality similar to P4, including packet parsing.

The design of packet parser in RMT is rather simple and relies

heavily on associative memories.

Both of these works assume ASICs as the target imple-

mentation platform. Our work aims at exploiting the on-field



structural programmability of FPGAs, avoiding overheads of

general-purpose architecture.

The P4 Language Consortium provides some basic tools

which can be used in 3rd party projects. Source codes of these

tools are publicly available under open source license. The

main project is P4-HLIR [8] which is the front end of the P4

compiler, creating Python object model of the P4 program.

It becomes useful for other projects because one can easily

continue with implementation of compiler’s back end from

this object representation. P4C-BEHAVIORAL [9] and P4C-

GRAPHS [10] are examples of back ends for two different

targets - C language in case of P4C-BEHAVIORAL

III. THE P4 LANGUAGE

P4: Programming Protocol-independent Packet Processors

[2], [3] is a high-level, platform-agnostic language. It repre-

sents a recent contribution to the broader idea of SDN and

the SDN ecosystem. Its main purpose is to provide a way

to define packet processing functionality of network devices,

paying attention to reconfigurability in the field, protocol inde-

pendence and target (platform) independence. Using relatively

simple syntax, P4 allows to define five basic aspects of packet

processing:

• Header Formats describe protocol headers recognized

by the device.

• Packet Parser describes the (conceptual) state machine

used to traverse packet headers from start to end, extract-

ing field values as it goes.

• Table Specification defines how the extracted header

fields are matched in possibly multiple lookup tables (e.g.

exact match, prefix match, range search).

• Action Specification defines compound actions that may

be executed for packets.

• Control Program puts all of the above together, defining

the control flow mainly among the tables.

For our work, the first two aspects of P4 are relevant. Header

format description may look like this:

header ethernet {

fields {

dst_addr : 48; // width in bits

src_addr : 48;

ethertype : 16;

}

}

The description simply lists fields of the packet header and

their width in bits. The example above shows the situation with

static header where the header length is the sum of lengths

of all fields. This can’t be done for protocols with variable

header length. P4 solves this situation by the header length

definition in form of an expression which uses fields from

the protocol header declaration to compute the header length.

Header format description with variable length may look like

this:

header_type ipv6_ext_t {

fields {

nextHdr : 8;

totalLen : 8;

frag : 12;

padding : 3;

fragLast : 1;

}

length : (totalLen + 1) * 8;

max_length : 1024; // Bytes

}

Packet parser description constructs a parse graph using the

header format description, for example:

header ethernet eth;

parser ethernet {

extract(eth);

switch(eth.ethertype) {

case 0x8100: vlan;

case 0x9100: vlan;

case 0x800: ipv4;

case 0xA100 mask 0xF100 : myProto;

}

}

The provided example uses switch and extract state-

ments. The extract statement instructs the parser to ex-

amine input packets and look for data defined in the header.

Parsed data is then used in the switch statement to determine

the next state (protocol) to process. There are also situations

when we don’t want to use the whole value from the protocol

field. The P4 language solves this with the mask statement

which is used in the case statement together with mask

value. In our example, the mask statement instructs the P4

parser to take the ethertype field, perform logical and

operation between the value and mask and compare the result

to 0xA100.

IV. PARSER GENERATOR DESIGN

This section introduces the basic architecture (Section IV-A)

of firmware parser module called HFE M2 [11] and a transfor-

mation algorithm (Section IV-B) from a P4 description to the

VHDL architecture of HFE M2. Section IV-C describes how to

infer special parameters of HFE M2 architecture which allow

us to optimize consumed resources of FPGA chip. Finally,

section IV-D analyzes time complexity of the transformation

algorithm.

A. Overview of HFE M2

The main idea of automatic generation of 100 Gbps parser

comes from the architecture of HFE M2. The architecture

consists of two main block types - protocol analyzers and

pipelines. Protocol analyzers are the heart of the whole ap-

proach. A generic interface is used for connection between

the protocol analyzers. There is an optional pipeline block

between each two protocol analyzers. The pipeline blocks can

be individually enabled/disabled at compile time to tune the



P
I
P
E
.

0

P
I
P
E
.

1

Ethernet

Analyzer

IP 

Analyzer

Ethernet Frame

Eth IP TCP

Input

Eth IP

TCP/UDP

Analyzer

TCP

P
I
P
E
.
 
2

P
I
P
E
.
 
3

Fig. 1. HFE M2 architecture

Protocol Analyzer

(4) Extracted Data
(1) Input Data

(2) Input Offset

(3) Inp�� �rotocol

(6) Ou�p�� �rotocol

(5) Output Offset

Data

Extractor

Data

Extractor

Data

Extractor

+

Next 

�rotocol

Decoder

Length Gen.

Fig. 2. Protocol Analyzer Architecture

final frequency, latency and chip area. Protocol analyzers and

pipeline blocks are connected to the processing chain which

represents the protocol stack of incoming network packet. No

memory (DDR or similar) is used in the HFE M2 - we are

working with the pure pipeline architecture which is based on

exchange of incoming and control data. An example of the

HFE M2 processing chain is shown in Fig. 1.

Protocol analyzer uses Generic Protocol Parser Interface

(GPPI) for connection between modules. This interface pro-

vides the input information necessary to parse a single protocol

header. That is: (1) current packet data being transferred at the

data bus, (2) current header offset within the packet and (3)

expected protocol to parse. GPPI output information includes

(4) extracted packet header field values, plus the information

needed to parse the next protocol header: (5) next header offset

and (6) type of the next protocol header. More details about the

GPPI can be found in [11]. Brief architecture of each protocol

analyzer block is shown in Fig. 2.

Protocol Analyzer architecture contains four basic block

types: (1) Data Extractors, (2) Next Protocol Decoder,

(3) Length Generator and (4) Adder. Data Extractors are used

to extract packet data from a given offset. Data Extractors are

configured with two parameters - Extract Length and Extract

Offset. The first parameter defines the number of extracted

bytes from packet data. The offset of data within the packet

is computed as the sum of current header offset (a value from

GPPI interface) and the Extract Offset parameter. Note that

Data Extractor blocks contain multiplexers which allow to

extract data from any byte position. These multiplexers can

be configured with some additional optimization parameters

which have an influence on consumed resources. We describe

these parameters in Sec. IV-C.

Next Protocol Decoder is used to compute the next expected

protocol. Its structure is fully dependent on the protocol header

format. Generally, it is a function converting some extracted

packet header bytes into an internal number representing the

protocol type.

Length Generator block is used to compute the length

of current protocol header, so that it can be added to the

Input Offset signal to obtain the Output Offset signal, which

represents the start offset of the next protocol header. The

added offset value can be a constant or a result of an equation

(see the header format specification in previous section).

From the perspective of parser generation, we can identify

three basic types of blocks in the Protocol Analyzer structure

(see Fig. 2): (1) Static (green color), (2) Configured (grey

color), (3) Fully protocol-specific (blue color). The static

block is used in every Protocol Analyzer without any change.

The protocol analyzer architecture contains only one static

block, which is the adder. This block is used to compute

the next protocol offset from current Input Offset and Length

Generator output. The second group of blocks is general

enough for usage in all protocol analyzers, only with different

parameters settings. The architecture contains several Data

Extractor blocks which are instantiated (from hand optimized

template) and configured regarding to Header Format specifi-

cation. There are two blocks marked blue. These blocks are

entirely protocol specific, so that every protocol analyzer needs

custom implementation of them. That means that Protocol

Decoder and Offset Generator must be uniquely generated for

each protocol analyzer from P4 Header Description.

This architecture of Protocol Analyzer is general enough for

processing of most protocols. For this target block structure,

we can generate, configure and connect all described blocks

in automatic way from a P4 program. Details of this transfor-

mation process are discussed in the next section.

B. Transformation from P4 to HFE M2

Transformation algorithm is one of the key problems ad-

dressed in this paper. As we note in Sec. IV-A, HFE M2 ar-

chitecture consists of protocol analyzers and pipeline modules

which are connected to processing chain. The transformation

from P4 to HFE M2 can be divided into two basic problems

- (1) Generating the protocol analyzers and (2) Generating

the processing chain. Inputs of the transformation process are

Header Format and Parser Graph Representation.

We define the Parser Graph Representation (PGR) as an

oriented graph which is generated from the P4 Packet Parser

description. Each node (or state) represents one packet header

and each transition represents the next parsed protocol header.

Each transition is taken based on the parsed data. Condition of

a transition is inferred from the P4 Packet Parser description.

Loop edge represents situation when we want to support more

protocols of the same type in protocol stack (like VLAN or

MPLS stacking, for example). Each non-finite state contains



Eth 

 0

VLAN 

 1

IPv6 

 2

IPv4 

 2

Unknown

Unknown

TCP 

 3

UDP 

 3

ICMPv6 

 3

Unknown

ICMP 

 3

Unknown

Fig. 3. Parser Graph Representation; supports 2xVLAN, IPv4, IPv6, TCP,
UDP, ICMP, ICMPv6

additional transition to the Unknown state. This state is not

explicitly described in P4 program but it is implicitly required

by the parser. It represents the situation when no value matches

the actual set of transition conditions (e.g. we cannot continue

in the parsing of next protocol header). Each PGR node also

contains a pointer to Header Format specification which is

needed during generation of individual Protocol Analyzers.

The PGR representation is built from a P4 Packer Parser

description using the depth-first search (DFS) algorithm. We

introduce more details about this structure in the following

text. An example of this generated representation is in Fig. 3.

The figure doesn’t show transition conditions in order to keep

it well arranged.

As we note in Sec. IV-A, Protocol Analyzer consists of four

basic types of blocks. We now describe how each Protocol

Analyzer block is generated.

The Length Generator block is derived directly from P4

Header Description. It can be either a constant in case of

constant length header, or a (usually simple) formula in case

of variable length header.

The Next Protocol Decoder is also generated from the P4

Packet Parser description. Each transition from the parser state

is described in the P4 switch statement by the tuple (value,

next state). Therefore we can implement Protocol Decoder by a

multiplexer which selects the next protocol based on currently

parsed values. The protocol headers that follow the currently

parsed header are found in PGR.

Extracted Data of Packet Analyzer can be inferred from the

Header Format specification because we know the structure

of protocol fields in the parsed protocol. Therefore, we can

extract protocol fields from extracted data using the list of

protocol fields and their sizes.

Adder is a static block common to all Protocol Analyzers.

Finally, Data Extractor blocks are parameterizable units

which can be used in all Protocol Analyzers without any

change, only by setting the parameters to match the target

protocol. When generating the Next Protocol Decoder and

Length Generator blocks and Extracted Data outputs, Data

Extractors are instantiated and parametrized as needed. Both

Extract Length and Extract Offset parameters are directly

Algorithm 1: Recursive algorithm for identification of

node levels

Function FindNodeLevels(node, curr level)
Data: node = actual node to process
Data: curr level = actual level of the node
Result: Node with updated maximal level
begin

if node.fresh == False then
return;

end

/* Mark the node as not fresh and

update the level */

node.fresh = False;
act level = node.get level();
if act level ¡ curr level then

node.set level(curr level);
end

/* For all fresh successors, update

the level and call the same

function */

node successors = node.get next states();
for next node in node successors do

/* Don’t call the node if the

longest path already exists */

if next node.get level() - node.get level() ¡ 1 then
FindNodeLevels(next node,curr level+1);

end
end

/* Mark the node as not visited */

node.fresh = True;
return;

end

derived from the P4 description.

Generation of the processing chain uses PGR as an input.

The key problem is to identify a place for insertion of each

protocol analyzer in the processing chain. This chain of

protocol analyzers represents processed protocol stack as we

describe in Sec. IV-A. Our task is to identify the longest paths

to each node in a PGR. Length of the longest path from root

to a node represents a position in the processing chain. If we

have several nodes on the same level, we connect protocol

analyzers in series with arbitrary ordering. While same-level

analyzers could be connected in parallel, the serial approach

allows us to keep the homogeneous structure of processing

chain. The longest paths in PGR is found using the Alg. 1.

The algorithm recursively traverses and identifies node levels

in inspected PGR. The result of this algorithm is shown in

Fig. 3, where each node contains a number which represents

the length of the longest path from root (e.g. the latest possible

use of a protocol header in a packet).

Finally, we introduce a brief Alg. 2 which is used for gener-

ation of complete HFE M2 architecture from a P4 description.

We have implemented this complete transformation algorithm

in Python language with usage of P4-HLIR [8] project.

The result of Alg. 2 can be seen in Fig. 4 which represents

the processing chain generated from the PGR in Fig. 3. Fig. 4



Algorithm 2: Brief transformation algorithm from P4 to

HFE M2

Procedure TransformationToHFEM2(prog)
Data: prog = P4 Program
Result: VHDL code of the HFE M2 architecture
begin

/* 1) Identify the Parser Graph

Representation */

parser graph =
GetParserGraphRepresentation(prog);

/* 2) Mark all nodes as Fresh. After

that, traverse through the graph

and identify level of each node */

MarkFresh(parser graph);
FindNodeLevels(parser graph.root,0);

/* 3) Generate Protocol Analyzers and

processing chain */

GenerateProcessingPipeline(parser graph);
end

Fig. 4. Generated processing chain; pipeline modules are omitted for brevity

doesn’t contain any pipeline modules for brevity, but the real

hardware implementation contains a pipeline module between

each two adjacent protocol analyzers. The figure also shows

expanded VLAN modules because our input PGR supports

two VLAN headers. This figure also shows the situation when

two or more different nodes are situated on the same level.

Such nodes are connected in series and their relative position

doesn’t matter. The only rule is to keep them together (i.e. to

connect modules which belong to the same level in series).

As we note in III, we use the subset of P4 language which is

related to packet parsing description. The P4’s parser statement

supports another constructs which are related to setting of

metadata fields (intrinsic or user-defined). This functionality

is not supported by our tool because it is not related to data

extraction from ingress data. However, this functionality can

be easily implemented into existing HFE M2 architecture.

C. Optimizations

The original hand-written HFE M2 parser supports two

optimizations which save significant amount of chip resources.

Therefore, we have decided to support some of these optimiza-

tions in our generator as well.

The first optimization is related to protocol analyzers’ GPPI

interface. The key idea is to optimize width of the offset bus

which is used for signalization of protocol header start (Input

Offset and Output Offset signals). In another words, Input

Offset and Output Offset signals are pointers into the packet.

...0 1 62 63

Input data word: 64 Bytes

6

(a) (b)

0 ... 56 ...8

3

64 Possible Extract Positions 8 Possible Extract Positions

Input data word: 64 Bytes

...

Fig. 5. Example of data extraction multiplexer: full (a), optimized (b)

The reason for this optimization is that protocol stack is being

analyzed in a sequential manner within the packet. Therefore,

the width of offset bus can increase in a sequential manner too

– it is unnecessary to implement all logic (adders etc.) at full

data width. The bus width parameter is inferred from maximal

protocol header lengths during translation. The bus width on

each level is computed as a binary logarithm of the sum of all

preceding protocol header lengths. Narrower offset bus leads

to smaller modules for computation of next header offset and

other values and thus saves chip resources.

The second optimization is related to data extraction which

is performed by multiplexers within Data Extractor blocks.

Generally, each Data Extractor is able to extract data from any

byte position in the packet bus data word. The multiplexer

is controlled by current data bus offset and the offset of

the desired field within the header. However, given the fact

that the packet header may start only at certain positions on

the data bus, current offset can contain only values with the

corresponding resolution. This resolution is computed from

Header Format and Packet Parser description. Using these

two specifications, we identify a list of all possible starting

positions of each analyzed header in the processing chain. This

knowledge is built from a protocol header length and relations

between protocol headers by simulation of data transfer on

data bus. Computed lists are used for identification of required

multiplexer’s parameters. By making Data Extractors less gen-

eral, we simplify the structure of each extraction multiplexer

and save a significant amount of chip resources. An example

of this optimization is shown in Fig. 5.

There is also a place for optimizations of P4 program which

cannot be automatically generated. Instead, it is required to

optimize the program during design time. The generator can

then benefit from more efficient input, which results in better

design in terms of latency and consumed resources. In this

text, we introduce one such optimization of P4 program which

leads to less protocol analyzer blocks being generated. The

basic idea is to merge protocol headers that are compatible

in term of extracted protocol header fields. As an example,

we want to extract source and destination ports of TCP and

UDP protocol. Therefore, we create a new fake protocol header

which describes export of interesting fields. We don’t have to

worry about incomplete protocol header specification because

our replaced protocol headers are leaves of PGR (see Fig. 3),

so that there is no further processing after this merged header.

We define the new protocol header like this:

header tcp_udp_t {

fields {



src_port : 16; // width in bits

dst_port : 16;

}

}

D. Time complexity

Time complexity of the proposed transformation Alg. 2

consists of following components:

1) GetParserGraphRepresentation’s time com-

plexity is equal to O(V + E) (DFS algorithm), where

V is the number of nodes and E is the number of

edges. Our transformation algorithm requires PGR with

no cycles (loop edges are ignored because they means

a protocol repetition). In general, maximal number of

edges in acyclic graph is equal to n

2
∗ (n− 1) where n

is the number of protocol analyzers (e.g. nodes of our

graph). Total time complexity of DFS is O(n+ n

2
∗ (n−

1)) ∼ O(n2)
2) FindLongestPaths’s time complexity is equal to

O(n2) (DFS algorithm), where n is the number of

protocol analyzers

3) MarkFresh’s time complexity is equal to O(n), where

n is a number of protocols (e.g. nodes of PGR)

4) GenerateProcessingPipeline’s time complex-

ity is equal to O(n) because we are generating a

processing chain with n protocol analyzers

Total time complexity of the transformation is O(n2) +
O(n2) +O(n) +O(n) = O(2 ∗ n2) +O(2 ∗ n) ∼ O(n2).

V. RESULTS

We have generated parsers supporting the following protocol

stack: Ethernet, up to two VLAN headers, up to two MPLS

headers, IPv4 or IPv6 (with up to two extension headers), TCP

or UDP, ICMP or ICMPv6. The parser is able to extract the

classical quintuple: (IP addresses, protocol, port numbers).

We have tested properties of generated parsers with two

different protocol stacks:

• full - Ethernet, 2×VLAN, 2×MPLS, IPv4/IPv6 (with

2×extension headers), TCP/UDP, ICMP/ICMPv6

• simple L2 - Ethernet, IPv4/IPv6 (with 2×extension head-

ers), TCP/UDP, ICMP/ICMPv6

For each mentioned protocol stack, we compare the manu-

ally optimized HFE M2 parser and the generated parser with

all optimizations enabled. All tested designs implement pars-

ing engines without any additional logic like outputs FIFOs

for parsed data etc. We use the Slice Logic (number of used

LUTs and REGs) as a metric of resource utilization because

these parts are the most utilized in most FPGA designs.

We provide results after synthesis for the Xilinx Virtex-7

XCVH580T FPGA using Xilinx Vivado 2015.1 design tool.

All designs were synthesized with different settings of the

data width and the number of pipeline stages. These settings,

together with the resulting frequency, latency and resource

usage, generate the large space of possible solutions for

each P4 program. These solutions were searched for Pareto

TABLE I
COMPARISON OF DIFFERENT OPTIMIZATION METHODS WITH RESOURCE

CONSUMPTION FOR THE XILINX VIRTEX-7 XCVH580T FPGA

Opt. Pipes
Latency
[ns]

Thr.
[Gbps]

Slice
LUT [-]

Slice
REG [-]

O0 8 39.8 102.7 25335 (6.98%) 5055 (0.69%)
O1 14 75.3 101.9 21477 (5.91%) 8930 (1.23%)
O2 8 46.1 100.0 10103 (2.78%) 5537 (0.76%)
O3 9 44.5 115.1 14270 (3.93%) 5427 (0.74%)
O4 7 40.7 100.7 8314 (2.29%) 4795 (0.66%)

set which allows us to pick the best-fitting solution for an

application.

In each hand optimized design testcase, we use two

different data widths: 256 and 512 bits. For each data width,

every possible placement of pipelines was tested: 29 possible

combinations in the case of the full protocol stack and 25

combinations in the case of simple L2 protocol stack. (Because

there are 9 and 5 configurable pipeline stages, respectively, in

those parsers.)

In each generated parser testcase, we use two different

data widths: 256 and 512 bits. For each simple L2 parser,

every possible placement of pipelines was tested: 210 possible

combinations. In the case of full parser, there are 214 possible

solutions. We have randomly selected 20% of all possible

solutions. This approach allows us to briefly inspect properties

of generated processing chain in a reasonable compile time.

For each test case, we provide two graphs: the first graph

shows the relation between throughput and FPGA resources.

The second graph shows the relation between throughput and

latency of the tested parser. Finally, we provide two more

graphs with Pareto sets: one showing Pareto sets optimized

for throughput and chip area without any regard to latency,

and second optimized for throughput and latency without

any regard to FPGA resources. We also introduce results for

optimizations which are described in Sec. IV-C because they

have an influence on latency and used resources. We define

the following notation:

• No optimizations (O0) - no optimizations are used

• Offset optimization (O1) - optimization of the offset

width

• Offset + multiplexer optimization (O2) - offset and

multiplexer optimizations

• Optimized P4 program (O3) - O0 version with effec-

tively written P4 program (manual optimization)

• All optimizations (O4) - all proposed optimizations are

used

Resource utilization (values in parentheses represent the

percentual usage of available FPGA’s resources) and latency

for parsers generated with different optimizations are shown

in Tab. I. The table shows the influence of proposed opti-

mizations on similar hardware configurations with throughput

around 100 Gbps. For all of the following results we use O2

optimization, since O3 and O4 require manual modifications

to the original P4 program, which we consider highly non-

standard scenario.



0 50 100 150
0

5000

10000

15000

20000

25000

Throughput [Gbps]

S
lic

e
 L

o
g
ic

 [
-]

hand,512 Bits

hand,256 Bits

P4,O2,512 Bits

P4,O2,256 Bits

Fig. 6. The FPGA resource utilization for different settings of the simple L2
parser

0 50 100 150
0

20

40

60

80

100

120

140

T�roughput [Gbps]

L
a
te

n
c

y

 [
n
s
]

hand,512 Bits

hand,256 Bits

P4,O2,512 Bits

P4,O2,256 Bits

Fig. 7. The latency for different settings of the simple L2 parser

Fig. 6 shows throughput and FPGA resources and Fig. 7

shows throughput and latency for simple L2 protocol stack.

Each point in both figures represents one tested solution for

hand optimized and P4 based HFE M2 parsers. Fig. 8 shows

throughput and FPGA resources and Fig. 9 shows throughput

and latency for full protocol stack. It can be seen that the data

width of 256 bits is suitable for throughput up to 60 Gbps,

while for higher throughput a 512b pipeline is needed.

For comparison of the achieved Pareto set results for differ-

ent protocol stacks, we provide graphs in Fig. 10 (throughput

and FPGA resources) and Fig. 11 (throughput and latency).

The Pareto sets show the best achievable solutions for our

parsers. From these figures, we can see that supported protocol

stack can significantly change parameters of the parser in

terms of FPGA resources and latency. We can also see that

P4 based parsers are approximately two times worse in terms

of both latency and consumed resources. The average price

(in Slice Logic per Gbps) of hand-optimized parsers from the

0 50 100 150
0

5000

10000

15000

20000

25000

Th�oughput [Gbps]

S
lic

e
 L

o
g
ic

 [
-]

hand,512 Bits

hand,256 Bits

P4,O2,512 Bits

P4,O2,256 Bits

Fig. 8. The FPGA resource utilization for different settings of the full parser

0 50 100 150
0

20

40

60

80

100

120

140

Throughput [Gbps]

L
a
te

n
c
y
 [
n
s
]

hand,512 Bits

hand,256 Bits

P4,O2,512 Bits

P4,O2,256 Bits

Fig. 9. The latency for different settings of the full parser

Pareto set are 61 and 102 for the simple L2 and full variants

respectively, while the generated parsers cost 125 and 168

Slice Logic/Gbps. This is because manually created parsers

include some even more advanced optimizations, which are

highly protocol-specific and could not be included in our

generator for the sake of universality. The highly protocol-

specific optimization of hand written modules is similar to

node merging which was introduced in section IV-C. We

assume that the difference between P4-generated parsers (with

O2 optimization) and hand optimized parsers is small enough

to justify the added flexibility of P4 in many cases.

From presented results, we can infer following important

conclusions:

1) We are able to generate parsers with equal functionality

in shorter time.

2) Generated parsers aren’t significantly worse than hand

optimized versions created by a professional with many

years of experience in HDL coding.



0 50 100 150
0

5000

10000

15000

20000

25000

Throughput [Gbps]

S
lic

e
 L

o
g
ic

 [
-]

hand,pareto,simple L2

P4,O2,pareto,simple L2

hand,pareto,full

P4,O2,pareto,full

Fig. 10. Comparison of the FPGA resource utilization versus throughput
Pareto sets for the tested protocol stacks

0 50 100 150
0

10

20

30

40

50

60

70

��roughput [Gbps]

L
�

te

n

c
y
 [

n

s
]

ha�d,pareto,simple 	


P4,O2,pareto,simple 	


ha�d,pareto,full

P4,O2,pareto,full

Fig. 11. Comparison of the latency versus throughput Pareto sets for the
tested protocol stacks

VI. CONCLUSION

Each networking device needs to parse incoming data in

order to perform subsequent actions. This paper presents the

transformation tool from P4 language to a highly configurable

packet parser for FPGA, which achieves throughput above

100 Gbps and is usable in a variety of application. We present

the details of the transformation algorithm which directly

generates HDL code from a given P4 description.

One can see from the presented results that we can generate

a parser from P4 description with throughput, latency and

chip area parameters similar to a hand optimized solution.

This parser can be generated from a P4 program without any

knowledge of hardware description language. That makes this

approach more feasible for networking experts without deep

knowledge of FPGA programming. The second advantage is

related to the time of development. By using our P4-to-VHDL

generator, the development time of a networking device can

be shortened significantly. Once the high-level P4 description

is ready, it takes only a couple of seconds to generate a VHDL

parser. Moreover, the advantage of a growing P4 ecosystem is

that additional tools are available. For example, one can first

generate a C program from P4, perform software conformance

test, and only then easily switch to hardware, having part of

the system already tested and verified.

The full version of generated parser consumes only 2.78%

Slice LUTs and 0.76% Slice REGs of the Xilinx Virtex-7

XCVH580T FPGA to achieve throughput of 100 Gbps (in

the case of O2 optimization). This result leaves most of the

FPGA resources free for other functions of a target application.

Moreover, we can reach even smaller resource consumption

in the case of O4 optimization. However, this requires manual

modifications to the original P4 program, which we consider

rather non-standard approach.

ACKNOWLEDGMENT

This research has been partially supported by the “CESNET

E-infrastructure” project no. LM2015042 funded by the Min-

istry of Education, Youth and Sports of the Czech Republic,

the grant SGS15/122/OHK3/1T/18 and by the European Union

in the context of the “BEBA” project (Grant Agreement:

644122).

REFERENCES

[1] Open Networking Foundation, “Open Flow,”
https://www.opennetworking.org/sdn-resources/openflow.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM

Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2656877.2656890

[3] P4 Language Consortium, “P4,” http://p4.org/.
[4] F. Risso and M. Baldi, “Netpdl: An extensible xml-based language for

packet header description,” Comput. Netw., vol. 50, no. 5, pp. 688–706,
Apr. 2006. [Online]. Available: http://dx.doi.org/10.1016/j.comnet.2005.
05.029

[5] M. Attig and G. Brebner, “400 gb/s programmable packet parsing on a
single fpga,” in In Proceedings of the 2011 ACMJIEEE Seventh Sym-

posium on Architectures for Networking and Communications Systems,

ANCS ’11. IEEE Computer Society, 2011, pp. 12–23.
[6] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown, “Design

principles for packet parsers,” in Architectures for Networking and

Communications Systems (ANCS), 2013 ACM/IEEE Symposium on, Oct
2013, pp. 13–24.

[7] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis:
Fast programmable match-action processing in hardware for sdn,” in
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
ser. SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 99–110.
[Online]. Available: http://doi.acm.org/10.1145/2486001.2486011

[8] P4 Language Consortium, “P4-HLIR,” https://github.com/p4lang/p4-hlir.
[9] P4 Language Consortium, “P4C-BEHAVIORAL,”

https://github.com/p4lang/p4c-behavioral.
[10] P4 Language Consortium, “P4-GRAPHS,”

https://github.com/p4lang/p4c-graphs.
[11] V. Pus, L. Kekely, and J. Korenek, “Low-latency modular packet header

parser for fpga,” in Proceedings of the Eighth ACM/IEEE Symposium

on Architectures for Networking and Communications Systems, ser.
ANCS ’12. New York, NY, USA: ACM, 2012, pp. 77–78. [Online].
Available: http://doi.acm.org/10.1145/2396556.2396571


