
FPGA Accelerated Change-Point Detection
Method for 100Gb/s Networks

Tomáš Čejka1, Lukáš Kekely1, Pavel Benáček2, Rudolf B. Blažek2, and Hana
Kubátová2

1 CESNET a. l. e.
Zikova 4, Prague, CZ

cejkat,kekely@cesnet.cz
2 CTU in Prague – FIT
Thakurova 9, Prague, CZ

benacekp,rblazek,hana.kubatova@fit.cvut.cz

Abstract. The aim of this paper is a hardware realization of a statisti-
cal anomaly detection method as a part of high-speed monitoring probe
for computer networks. The sequential Non-Parametric Cumulative Sum
(NP-CUSUM) procedure is the detection method of our choice and we
use an FPGA based accelerator card as the target platform. For rapid
detection algorithm development, a high-level synthesis (HLS) approach
is applied. Furthermore, we combine HLS with the usage of Software
Defined Monitoring (SDM) framework on the monitoring probe, which
enables easy deployment of various hardware-accelerated monitoring ap-
plications into high-speed networks. Our implementation of NP-CUSUM
algorithm serves as hardware plug-in for SDM and realizes the detection
of network attacks and anomalies directly in FPGA. Additionally, the
parallel nature of the FPGA technology allows us to realize multiple dif-
ferent detections simultaneously without any losses in throughput. Our
experimental results show the feasibility of HLS and SDM combination
for effective realization of traffic analysis and anomaly detection in net-
works with speeds up to 100Gb/s.

1 Introduction

Computer networks are getting larger and faster, and hence the volume of data
captured by network monitoring systems increases. Therefore, there is a need to
analyze more data for detection of network attacks and traffic anomalies. This
paper deals with real-time detection of attacks suitable for high-speed computer
networks thanks to the direct deployment of detection methods in hardware
monitoring probe.

Today, monitoring systems usually consist of several probes that capture and
preprocess huge amounts of network traffic at wire speed, and one or more collec-
tor servers that collect and store network traffic information from these probes.
Analysis of network data is traditionally also realized at the collectors. In this

paper, we propose a different approach, where anomaly detection is shifted di-
rectly into the monitoring probes. The aim of this approach is to enable real-time
analysis even in very large networks with speeds up to 100Gb/s per Ethernet
port and to reduce the latency of anomaly detections.

It is virtually impossible to process all network data from the 100Gb/s link in
software using only commodity hardware. The main limitations lay in insufficient
bandwidth of communication paths between the network interface card and the
software components [1] and in limited performance of the processors. Therefore,
hardware acceleration must be used for high-speed networks in order to avoid
transferring and processing of all the data in the software.

In this paper, we utilize a special network interface card mounted with FPGA
chip for hardware acceleration of network traffic processing as a basis for our
high-speed probe. The FPGA on the card allows us to realize more advanced
data processing features (e.g. anomaly detection methods that use packet level
statistics) directly on the card, thus reducing the data load for the software. To
demonstrate this approach, we concentrate on a real-time sequential Change-
Point Detection (CPD) method that is designed to minimize the average detec-
tion delay (ADD) for a prescribed false alarm rate (FAR) [2,3].

As the basis for the FPGA firmware, we use Software Defined Monitoring
(SDM). SDM is a novel monitoring approach proposed in [4], that can be used
as a framework for hardware acceleration of various monitoring methods. SDM
combines hardware and software modules into a tightly bound co-design that is
able to address challenges of monitoring from data link to application layer of the
ISO/OSI model in modern network environments at the speeds up to 100Gb/s.

The main contribution of this paper is the evaluation of a statistical real-
time detection methods implemented in hardware. The detection methods are
extensions of a hardware accelerated monitoring probe designed for 40Gb/s and
100Gb/s Ethernet lines. The resulting device is able to analyze unsampled high-
speed network traffic without loss.

The rest of this paper is organized in the following way. Introduction to
the implemented sequential non-parametric change-point detection method (NP-
CUSUM) can be found in Sec. 2. The used SDM concept is briefly described in
Sec. 3. Sec. 4 describes created hardware implementation of detection method.
Evaluation of the developed system and the achieved results are presented in
Sec. 5. Related work and main differences between existing projects and our
implementation are presented in Sec. 6. Sec. 7 summarizes the results presented
in this paper and outlines our future work.

2 Change-Point Detection

Network attacks, intrusions, or anomalies appear usually at unpredictable points
in time. The start of an attack is mostly observable as a change of some sta-
tistical properties of the network traffic or its specific part. Therefore, methods
based on sequential Change-Point Detection theory are suitable for intrusion
detection. CPD methods detect the point in time where the distribution of some

perpetually observed variables changes. In network security settings, these vari-
ables correspond to some relevant, directly observed or calculated network traffic
characteristics. The main problem of such approach is the lack of precise knowl-
edge about the statistical distributions of these traffic characteristics. Ideally,
the distributions should be known both, before and after the distribution change
that corresponds to the anomaly or attack. Therefore, we use a non-parametric
CPD method NP-CUSUM that was developed in [2,3] and that does not require
precise knowledge about these statistical distributions.

NP-CUSUM is inspired by Page’s CUSUM algorithm that is proven to be
optimal for detection of a change in the mean (expectation) when the distribu-
tions of the observed random variables are known before and after the change
[5]. The typical optimality criterion in CPD is to minimize the average detec-
tion delay (ADD) among all algorithms whose average false alert rate (FAR)
is below a prescribed low level. Page’s CUSUM procedure, which is based on
the log-likelihood ratio, can for i.i.d. (independent and identically distributed)
random variables Xn be rewritten [5] as:

Un = max

{

0, Un−1 + log
p1(Xn)

p0(Xn)

}

, U0 = 0, (1)

Where p0 and p1 are the densities of Xn before and after the change, respectively.
The formulation in (1) is the inspiration for the NP-CUSUM method proce-

dure [2,3]. The procedure is applicable to non–i.i.d. data with unknown distribu-
tions (i.e. the method is non-parametric). First, the Page’s CUSUM procedure
was generalized as Sn = max{0, Sn−1 + f(Xn)} with some function f . Changes
in the mean value of Xn can be detected using sequential statistic:

Sn = max{0, Sn−1 +Xn − µ̂− εθ̂}, S0 = 0, (2)

Where µ̂ is an estimate of the mean of Xn before the attack, θ̂ is an estimate of
the mean after the attack started, and ε is a tuning parameter for optimization.
It has been shown in [3] that with optimal value of ε the NP-CUSUM procedure
(2) is asymptotically optimal as FAR decreases. That is, for small prescribed
rate of false alarms, other procedures will have longer detection delays. In fact,
the delays can theoretically be exponentially worse [3].

As the input of the NP-CUSUM algorithm, we can use various features Xn of
the observed network traffic. To basically evaluate our hardware implementation
of the method, we have chosen for Xn the ratio of SYN and FIN packets of
the Transmission Control Protocol (TCP) in a short time window [6]. During
“normal” operation of the network, each connection is opened using two SYN
packets, and closed using two FIN packets (one in each direction). Therefore,
we expect the ratio of SYN and FIN packets to be on average close to 1 or at
least constant. Sudden and consistent change of the ratio is suspicious and can
be caused by some sort of attacks (e.g. SYN or FIN packet flood) [6].

To demonstrate the scalability and power of our hardware implementation
using SDM, we raise the number of observed statistics and add some more NP-
CUSUM blocks in parallel. The added statistics utilize information about ICMP

and RST TCP packets. All measured values are used in form of ratios in order
to avoid the dependency on trends and traffic volumes that could increase the
number of false alerts. Finally, thanks to parallelism, observation of multiple
statistics simultaneously does not negatively affect the processing throughput.

3 Software Defined Monitoring System

Software Defined Monitoring (presented in [4,7]) forms a basis for our hardware
implementation of detection methods in a monitoring probe. In this section we
briefly describe the main architecture of the SDM system and the changes needed
to accommodate the implementation of NP-CUSUM monitoring system.

An SDM system consists of two main parts: firmware for the FPGA on hard-
ware accelerator and software for general processors. The hardware and software
components are connected via a PCI-Express bus. Both parts are tightly coupled
together to allow precise software control of hardware processing. The software
part of the SDM system consists of monitoring applications and a controller. The
monitoring applications can perform advanced monitoring tasks (such as analysis
of application protocols) or also export information (alerts) to the collector. The
controller manages the hardware module by dynamically removing and inserting
processing rules into its memory (see Fig. 1). The instructions contained in the
rules tell the hardware what actions to perform for each input packet with some
characteristics. These rules are defined by the monitoring Applications, which
inserts them to the Hardware via the Controller.

Due to aforementioned facts, the monitoring application can not only use
data coming from the hardware, but it can also manage the details of hardware
processing of network traffic as well. The offloading of traffic processing into
the hardware saves both, the bandwidth of communication interface (PCIe) and
the CPU processing time. The hardware module can pass information to the
software in the form packet metadata from a single packet, or as aggregated
records computed from multiple subsequent packets with common features (such
as NetFlow [8] aggregation). Whole received packets or their parts can be also
sent to the software for further (deeper) analysis. Graphical representation of
the SDM concept is shown in Fig. 1.

Processing of an incoming network packet in the SDM hardware starts with
the extraction of its protocol headers. The extracted data are used to search ade-
quate rule in memory that specifies the desired processing possibly supplemented
by address of a record. The selected rule and metadata for each given packet are
then passed to the SDM Update block, which is the heart of the SDM concept
making that idea strong. This block contains a routing table that is used to
forward the incoming processing request to the appropriate update (instruction)
blocks, for execution. Each of these instruction blocks can perform a specific
update operation (realize a specific aggregation type) on the record. Each up-
date operation is delimited by two memory operations: reading the stored record
values, and writing back the updated values. Also, new types of updates (ag-
gregations) can be specified, simply by implementing the new instruction block

Apps

HW

Controller

SW

Packets

RulesAggr. Data

Packets

Metadata

Fig. 1. Software Defined Monitoring (SDM) abstract architecture

and plugging it into the existing Update block infrastructure. A special type of
processing action is an export into the software of the processed packet data,
metadata, or stored values from a selected record, optionally followed by clearing
of that record. Records can be exported when some special condition is met or
in periodical manner.

4 Implementation

4.1 The CPD hardware block

Our hardware implementation of CPD method is realized as hardware plug-in
for the SDM system. More precisely, it is available as a new instruction block
for the SDM Update module that is described in the previous section. The SDM
design supports access to arbitrary data records stored in memory for instruction
blocks. Although, the available data size of a record is limited due to memory
block size that can be read or written on each clock cycle – the block size is
equal to 288 b. Usage of bigger data records than 288 b would cause unwanted
latency increase and lower throughput of the whole monitoring hardware.

One CPD instruction block uses available space in memory to store: previous
historical value, 2 parameters of the NP-CUSUM algorithm, and 1 threshold
value that is used for alerting purposes. Memory should also contain counters
with observed features such as the number of SYN or FIN packets, and the
packet counter that starts the ratio and NP-CUSUM computation. The data
stored in memory is accessible from software and therefore all of the thresholds
and parameters can be changed on the fly.

The source code of the instruction block allows us to specify the data type size
of all values stored in memory. The choice of data type sizes implies the number
of hardware blocks that can work in parallel in the same clock cycle with the
same memory block. However, the decrease of data type size lowers the value
precision and data ranges. The NP-CUSUM parameters, the previous historical
value and the threshold are represented as 16 b decimal numbers. The counters
are set to 8 b. For one block that analyzes SYN/FIN ratio, the implementation

works with 88 b of memory for one record in total. Configuration with 4 NP-
CUSUM blocks uses 5 counters (SYN, FIN, RST, ICMP, packet counter) and
4 sets of fixed-point values. In total, 4 NP-CUSUM blocks would use 296b of
memory. Therefore the size of decimal number data type was shortened to 15 b
and the total used memory size was decreased to available 280b.

We use a high-level synthesis (HLS) approach [9], to implement the CPD
method from Sec. 2 for the FPGA as an instruction block inside the SDM sys-
tem. The structure of the implemented block is shown at Fig. 2. The main
advantage of using HLS approach is faster implementation of new hardware ac-
celerated monitoring and detection methods with minimal loss of efficiency in
comparison to traditional coding of FPGA firmware using Hardware Description
Languages (HDL) such as VHDL or Verilog. Following the requirements for the
SDM instruction block interfaces and general behavior, we have developed the
CPD hardware block in the C++ language.

Implementation of the CPD hardware block brings a several issues to solve.
The most important one is the choice of decimal numbers representation. We
try two of the standard approaches: fixed-point and floating-point representation.
The main advantage of the floating-point approach is the ability to represent a
greater range of values. But on the other hand, hardware realization of floating-
point arithmetic is very complicated and considerably slower. Therefore, the
usage of fixed-point arithmetic can be favored by better performance and lower
resource usage of the instruction block.

From the HLS point of view, the most important parameter for our design
goals is the achievable Initiation Interval (II). This parameter represents the
number of clock cycles needed for initialization of a new request in the instruction
block. Ideally, we require the II to be equal to one so that a new request can
be accepted in each clock cycle and the instruction block is able to achieve
full throughput. During our experiments, we have discovered that the effect of
decimal numbers representation on the II is following: floating-point version of
the instruction block has II of 11 clock cycles whereas the fixed-point version
has II of 1.

Another very important performance-related parameter of our implementa-
tion is latency. It is required to be as small as possible because high latency can
lead to delays between repeated processing of the same instruction caused by
the fact that records in the memory need to be locked in order to achieve atomic
processing. In the end, our experimental timing and performance results indicate
that the created implementation is able to handle network traffic at 100Gb/s
Ethernet line. More detailed results regarding our synthesis and FPGA require-
ments are discussed in Sec. 5.

Apart from CPD instruction block creation, another important part of the
implementation is connection of the new instruction block to the existing SDM
Update block. Thanks to the by design extensibility of SDM Update block, this
task is simple and straightforward. All that needs to be done is to wrap the
translated HLS implementation of the new block in a VHDL envelope that is
responsible for adapting the behavior of all predefined interface signals. The

Read and reservation

module

Update pipeline

CPD module

(C++ desc.)

HLS de ned

interface

SDM interface adaptor

Instruction

Reservation

and memory

interface

W
rite

 a
n

d
 re

le
a
s
e

m
o
d
u
le

O
u
tp

u
t S

D
M

 fo
rm

a
t

g
e
n
e
ra

to
r

Data to

 write

Data to

 export

Reservation

and memory

interface

SDM output

data

Fig. 2. Implementation of the CPD Instruction

wrapping process is depicted in Fig. 2. The gray blocks are parts of the SDM
designated for connecting of a new instruction blocks. The SDM can thus be
viewed as some kind of a framework that brings the possibility to create new
hardware modules for rapid network monitoring acceleration.

To finish the implementation of the Change-Point Detection method in the
SDM system, a software monitoring application needs to be created. The appli-
cation communicates with an SDM Controller daemon to manage the detection
details in hardware module (see Fig. 1) and also receives detected alerts. The
main task of the monitoring application is to control the detection process and
present its results to human operators.

5 Evaluation

Correct functionality of the created implementation of the CPD block was veri-
fied using referential software application. The referential application is written
in the plain C language and is not meant to be highly optimized for the HLS. Its
main purpose is only to validate the functionality of the hardware implementa-
tion. In addition, the software application is extended and serves as the base for
the measuring and detection application [10] that can be used in slower networks
or for estimation of configurable parameters for the CPD block.

We have implemented the hardware-based prototype of the NP-CUSUM de-
tection method as an instruction block for the SDM Update block in an SDM
monitoring probe. The prototype is developed for the network interface card
with a 100Gb/s Ethernet port and a Virtex-7 H580T FPGA, which is the main
core for the implemented detection functionality.

A detailed list of all FPGA resources needed for the implementation of one
CPD instruction block, which observes one feature, is shown in Tab. 1. In the

table there are also results for other constellations of the CPD blocks that contain
more computational blocks with 1, 2, or 4 instances of the NP-CUSUM algorithm
and observe more features in parallel. The total number of available resources
on used chip is 725 600 Flip-Flops (FF) and 362 800 Look-up tables (LUT). The
number of utilized LUTs and FFs for CPD instruction block itself, therefore,
accounts only for less than 1% of the available FPGA resources.

Table 1. FPGA resources used for the CPD instruction block in different configura-
tions.

Name 1 block 2 blocks 4 blocks
FF LUTs FF LUTs FF LUTs

Expression 0 458 0 496 0 479
Instance 280 252 560 504 560 504

Multiplexer - 1842 - 1868 - 2130
Register 2253 - 2377 - 2593 -

ShiftMemory 0 806 0 816 0 814

Total 2533 3358 2937 3684 3178 3982

Performance results for the CPD instruction blocks are shown in Tab. 2 and
Tab. 3, whereas Tab. 3 shows detailed information about the fixed-point im-
plementation. An Initiation Interval is required to be equal to one in order to
support processing of 100Gb/s network traffic at full wire-speed (see Sec 3). This
requirement is not satisfied only by the floating-point implementation. Vivado
HLS version 2013.2 was used for high-level C to VHDL synthesis. Xilinx ISE
version 14.7 with enabled synthesis optimization was used for VHDL to FPGA
netlist synthesis. Enabling the optimization such as register duplication leads
to a higher clock frequency achieved for the final implementation and also to
a higher resources consumption. The tables illustrate that after the optimiza-
tion all performance requirements from Sec. 3 have been met by the fixed-point
implementation.

Table 2. Comparison of timing results for the synthesized CPD instruction blocks.

Parameter Reached Reached Required

Fixed-point Floating-point

Clock period 4.08 ns 16.48 ns 5 ns
Frequency 245MHz 60.679MHz 200MHz
Latency 12 11 -
Initiation Interval 1 12 1

Bus Width 512 b 512 b 512 b
Achieved Throughput 125Gb/s 2.5Gb/s 100Gb/s

Table 3. Performance results for the CPD instruction blocks in different configurations.

Parameter Reached Reached Reached Required

1 block 2 blocks 4 blocks

Clock period 4.08 ns 4.20 ns 4.20 ns 5 ns
Frequency 245MHz 238MHz 238MHz 200MHz
Latency 12 12 12 -
Initiation Interval 1 1 1 1

Bus Width 512 b 512 b 512 b 512 b
Achieved Throughput 125Gb/s 121Gb/s 121Gb/s 100Gb/s

Finally, Tab. 4 shows the total number of FPGA resources required for the
whole synthesized SDM system with one CPD hardware plug-in. The table shows
that about 87% of the Virtex-7 H580T resources are still available. Therefore,
it is feasible to include several CPD hardware plug-ins in the SDM system for
parallel detection of various anomalies without significant latency increase nor
throughput loss.

Table 4. FPGA resources of the SDM system with one CPD hardware plug-in (FPGA
xc7vh580thcg1155-2).

Resource Name Used Resources [-] Utilization Percentage

LUTs 47731 13%
Registers 21089 2%
BRAMS 107 11%

6 Related Work

We present a brief overview of related work with regard to the differences of
our work. This section can be divided into two main domains. The first domain
is related to the hardware accelerated detectors and the second domain is re-
lated to the detection methods. From the hardware point of view, there are two
interesting projects somehow similar to our – Gorilla and Snabb Switch.

The Gorilla project [11] is the closest comparable solutions that we found.
Gorilla is a methodology for generating FPGA-based solutions especially well-
suited for data parallel applications. The main goal of Gorilla is the same as
our goal in SDM Update – to make the hardware design process easier and
faster. Our solution is however specially designed for the stateful processing of
network packet data. Furthermore, SDM is able to work with L2–L7 layers of
ISO/OSI model. In addition, the resource consumption of Gorilla is higher than
our solution.

The Snabb Switch project [12] shows different approach of network packets
processing. This approach uses modified drivers for faster transfer of network

packets from the network interface card to computer’s memory. Transferred data
are then processed by network applications. There is also available a Snabb
Lab with an accessible platform for measuring. This platform consists of the
Supermicro motherboard with dual Xeon-E5 and 20x10GbE (Intel 82599ES)
network cards. This configuration allows to process network traffic at speed of
200Gb/s. Massive usage of this platform is complicated due to large number
of network cards. Our solution is able to process network traffic at speed of
100Gb/s on one Ethernet line (2 ports allows to achieve 200Gb/s). Our work
is focused on full hardware acceleration of network traffic processing using the
only one 100Gb/s Ethernet port.

From the detection method point of view, there are various existing ap-
proaches of anomaly detection from many authors. Detection of SYN flood at-
tacks have been studied and well described in many papers. However, this issue
is currently still relevant because of increase of network traffic volumes. Detec-
tion based on NP-CUSUM is used in [13] by Wang et al., where the authors
present their observation about SYN-FIN pairs in network traffic under normal
condition: (1) there is a strong positive correlation between the SYN and RST
packets; (2) the difference between the number of SYN and FIN packets is close
to the number of RST packets. The authors bring experimental evaluation of
flood detection using NP-CUSUM, however they mention a possible disadvan-
tage of aggregated counting of packets that can be spoofed by emission of mixed
packet types by attacker.

Siris et al. in [14] compare a straightforward adaptive threshold algorithm,
which can bring satisfactory performance for attacks with high intensity, and al-
gorithm base on cumulative sum (CUSUM). Adaptive threshold algorithm uses
a difference from moving average value computed e.g. by EWMA algorithm. An
alarm is signalized when measured value is higher then moving average in last k
consecutive intervals. The CUSUM variant of detection algorithm is influenced
by seasonality and trends of network traffic (weekly and daily variations, trends
and time correlations). The authors propose to use some prediction method to re-
move non-stationary behavior before applying the CUSUM algorithm. However,
because of time-consuming calculations with minor gains compared to simpler
approaches, the authors used simpler approach based on application of CUSUM
on difference between measured value and result of Exponential Weighted Mov-
ing Average (EWMA) [15] algorithm.

Smoothing of the data signal is important for minimizing the number of false
alarms that can be caused by high peaks in data. Therefore, the data are usually
preprocessed to avoid short-time deviations to detect long-time anomalies. There
are various approaches to smooth the signal and the possible way is to exploit
some prediction method such as Moving average, EWMA, Holt-Winters [16],
or Box-Jenkins (ARIMA) [17] methods. However, dependency of an algorithm
on historical and current measured values can be dangerous and can lead to
overlooking of an attack. The issue of self-learning and self-adaptive approach is
being studied in our current and future work, however, it is out of the scope of
this paper.

Salem et al. presented the currently used methods of the network anomaly
detection in [18]. The paper evaluates the usage of extended NP-CUSUM called
Multi-chart NP-CUSUM, proposed by Tartakovsky et al. in [19], in combination
with Count Min Sketch and Multi-Layer Reversible Sketch (sketching method is
proposed eg. in [20]) for data aggregation and anomaly detection.

This paper is focused on the hardware implementation of the detection
method, whereas other authors usually more or less rely on software processing
of aggregated data. Our solution allows the detection method to be real-time
and independent on overloaded software part of system.

7 Conclusions

In this paper we present implementation and evaluation of the CPD algorithm
(NP-CUSUM) as hardware plug-in for the Software Defined Monitoring system.
We achieve easy and rapid development of detection hardware blocks for the
FPGA thanks to the usage of high-level synthesis. Also, creation of monitoring
probe utilizing newly implemented detection method is very simple and straight
forward thanks to the utilization of SDM as the platform for high-speed packet
processing. Moreover, we show frequency and FPGA resource evaluation of the
hardware implementation for the Virtex-7 H580T FPGA, which is large enough
and fast enough to accommodate complex network processing.

Results presented in this paper show that our implementation of NP-CUSUM
is capable of processing network traffic at the speed up to 100Gb/s. The firmware
of the whole monitoring probe consumes only 13% of the available resources of
the target FPGA and thus leaves space for several additional CPD (NP-CUSUM)
hardware plug-ins that can be used for parallel detection of multiple kinds of
network anomalies concurrently. In addition, other existing detection methods
can potentially be easily implemented in the similar way – as hardware SDM
plug-ins for detection of abrupt changes of network traffic characteristics. The
limiting factor for deploying detection hardware plug-ins into a monitoring probe
is the consumption of FPGA resources. Generally, detection methods with low
data storage requirements can be fully implemented as a hardware plug-ins.
Moreover, SDM allows creation of hardware-software co-design where only the
most critical parts of the more complex detection algorithm can be accelerated.
This partially hardware-accelerated approach can reduce the FPGA resource
requirements of advanced detection methods with moderate performance loss.

Acknowledgment

This work is partially supported by the “CESNET Large Infrastructure” project
no. LM2010005 funded by the Ministry of Education, Youth and Sports of the
Czech Republic and the project TA03010561 funded by the Technology Agency
of the Czech Republic.

References

1. Santiago del Rio, P.M., Rossi, D., Gringoli, F., Nava, L., Salgarelli, L., Aracil, J.:
Wire-speed statistical classification of network traffic on commodity hardware. In:
Proceedings of the 2012 ACM Conference on Internet Measurement Conference.
IMC ’12, New York, NY, USA, ACM (2012) 65–72

2. Blažek, R.B., Kim, H., Rozovskii, B., Tartakovsky, A.: A novel approach to de-
tection of “denial–of–service” attacks via adaptive sequential and batch–sequential
change–point detection methods. In: Proc. 2nd IEEE Workshop on Systems, Man,
and Cybernetics, West Point, NY. (2001)

3. Tartakovsky, A.G., Rozovskii, B.L., Blažek, R., Kim, H.: A novel approach to
detection of intrusions in computer networks via adaptive sequential and batch-
sequential change-point detection methods. IEEE TRANSACTIONS ON SIGNAL
PROCESSING 54(9) (2006) 3372–3382

4. Kekely, L., Puš, V., Kořenek, J.: Software defined monitoring of application pro-
tocols. In: INFOCOM 2014. The 33rd Annual IEEE International Conference on
Computer Communications. (2014) 1725–1733

5. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2) (1954) 100–115
6. Wang, H., Zhang, D., Shin, K.: Detecting syn flooding attacks. In: INFOCOM

2002. Twenty-First Annual Joint Conference of the IEEE Computer and Commu-
nications Societies. Proceedings. IEEE. Volume 3. (2002) 1530–1539

7. Puš, V.: Monitoring of application protocols in 40/100gb networks. In: Campus
Network Monitoring and Security Workshop, Prague, CZ, CESNET (2014)

8. Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC 3954 (2004)
9. Feist, T.: Vivado design suite. White Paper (2012)

10. Čejka, T.: Fast TCP Flood Detector. http://ddd.fit.cvut.cz/prj/FTFD (2014)
11. Lavasani, M., Dennison, L., Chiou, D.: Compiling high throughput network pro-

cessors. In: Proceedings of the ACM/SIGDA international symposium on Field
Programmable Gate Arrays. FPGA ’12, New York, NY, USA, ACM (2012) 87–96

12. Gorrie, L.: Snabb switch. http://www.snabb.co (2014)
13. Wang, H., Zhang, D., Shin, K.: Detecting syn flooding attacks. In: INFOCOM

2002. Twenty-First Annual Joint Conference of the IEEE Computer and Commu-
nications Societies. Proceedings. IEEE. Volume 3. (2002) 1530–1539

14. Siris, V.A., Papagalou, F.: Application of anomaly detection algorithms for de-
tecting SYN flooding attacks. Computer communications 29(9) (2006) 1433–1442

15. Ye, N., Borror, C., Zhang, Y.: Ewma techniques for computer intrusion detection
through anomalous changes in event intensity. Quality and Reliability Engineering
International 18(6) (2002) 443–451

16. Brutlag, J.D.: Aberrant behavior detection in time series for network monitoring.
In: LISA. (2000) 139–146

17. Box, G., Jenkins, G., Reinsel, G.: Time Series Analysis: Forecasting and Control.
Wiley Series in Probability and Statistics. Wiley (2013)

18. Salem, O., Vaton, S., Gravey, A.: A scalable, efficient and informative approach
for anomaly-based intrusion detection systems: theory and practice. International
Journal of Network Management 20(5) (2010) 271–293 00019.

19. Tartakovsky, A.G., Rozovskii, B.L., Blažek, R.B., Kim, H.: Detection of intrusions
in information systems by sequential change-point methods. Statistical Methodol-
ogy 3(3) (2006) 252–293

20. Krishnamurthy, B., Sen, S., Zhang, Y., Chen, Y.: Sketch-based change detection:
methods, evaluation, and applications. In: Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement, ACM (2003) 234–247

