Session 6A

FPGA & Reconfigurable Systems

Design Methodology of Configurable High
Performance Packet Parser for FPGA

Viktor Pus§, Lukas Kekely
CESNET a. 1. e.
Zikova 4, 160 00 Prague, Czech Republic
Email: pus,kekely @cesnet.cz

Abstract—Packet parsing is among basic operations that are
performed at all points of a network infrastructure. Modern net-
works impose challenging requirements on the performance and
configurability of packet parsing modules. However, high-speed
parsers often use a significant amount of hardware resources.
We propose a novel architecture of a pipelined packet parser for
FPGA, which offers low latency in addition to high throughput
(over 100 Gb/s). Moreover, the latency, throughput and chip area
can be finely tuned to fit the needs of a particular application.
The parser is hand-optimized thanks to a direct implementation
in VHDL, yet the structure is uniform and easily extensible for
new protocols.

Keywords—Packet Parsing; Latency; FPGA

[. INTRODUCTION

Since computer networks evolve both in terms of speed and
diversity of protocols, there is still a need for packet parsing
modules at all points of the infrastructure. This is true not
only in the public Internet, but also in closed, application-
specific networks. There are very different expectations on
packet parsers. For example, consider a multi-million dollar
business of low-latency algorithmic trading. In this area, the
latency, which has long been rather neglected parameter,
suddenly becomes more important than the raw throughput.
Small embedded devices, on the other hand, often require a
parser to be very small (in terms of the memory and chip
area), yet still to support a rather extensive set of protocols.

With a rising interest in the Software Defined Networking,
it is expected that the “ossification” of networks will be on
decline, and new protocols will appear at even faster rate than
before. This expectation handicaps fixed ASIC parsers and
favours programmable solutions: CPUs, NPUs and FPGAs.
Our work focuses on FPGAs, because of their great potential
in high-speed networks.

Current high-speed FPGA-based parsers can achieve a
raw throughput of over 400 Gb/s at the cost of the extreme
pipelining, which increases both the latency and the chip area
(FPGA resources) significantly [1]. Also, the configurability
issue is solved only partially. Configuring a set of supported
protocols is often addressed by a higher-level protocol de-
scription followed by an automatic code generation, but the
configuration of the implementation details is left unnoticed.

978-1-4799-4558-0/14/$31.00 ©2014 IEEE

Jan Korenek
IT4Innovations Centre of Excellence
Faculty of Information Technology
Brno University of Technology
Bozetéchova 2, 612 66 Brno, Czech Republic
Email: korenek @fit.vutbr.cz

This paper not only presents a novel packet parser design,
but also motivates engineers to create a parametrized solutions,
demonstrates the need for a thorough exploration of the space
of the solutions and suggests several capabilities that a High-
Level Synthesis system should possess to succeed in this area.

The paper is organized as follows: Section II introduces
several prior published works in this area, Section III describes
our implementation of a modular parser design, Section IV lists
all the necessary steps to create own parser in our methodology,
Section V presents obtained results and Section VI concludes
the work.

II. RELATED WORK

Rather outdated work by Braun et al. [2] uses the onion-like
structure of hand-written protocol wrappers to parse packets.
However, due to the 32-bits-wide data path and an old FPGA,
the parser achieves a throughput of only 2.6 Gb/s. There is
no extensive concept of a common interface for module reuse,
and it is unclear how the parser scales for a wider data path.

Kobiersky et al. [3] describe the packet headers in XML
and generate finite state machines, which parse the described
protocol stack. However, the number of states in FSMs rises
rapidly with the width of the data bus. Also, the crossbar used
in the field extraction unit does not scale well.

While not directly related to our work, there has been an
extensive research of general High-Level Synthesis systems,
usually translating pure or modified imperative languages (such
as C, C++, Java) into the hardware. Most of this research aims
to find a potential parallelism hidden in the program loops and
to make use of it by unrolling the loops and pipelining the
computation. However, the for or while cycle is far from a
convenient description of a packet parser, whose most natural
model of computation is perhaps a directed graph of mutually
dependent memory accesses. That may be the reason why we
do not see many results of a general HLS in this area.

There is a general HLS result that was given by Dedek et
al. in [4]. Handel-C language is used to describe the design, but
the details are not disclosed. The reported speed of 1454 Mb/s
implies that a rather narrow data bus (probably 16 bit) was
used. Therefore, the concern is about the scalability in terms
of both an effective description in Handel-C and an effective
compilation to hardware for much wider data words. This work
also demonstrates that using processors for the packet parsing

Session 6A

FPGA & Reconfigurable Systems

gives poor results. Compared to the Handel-C implementation,
a custom RISC processor designed specifically for the packet
parsing yields roughly the same chip area, but achieves only
a half of the throughput. Using the MicroBlaze [5] processor
(which is not optimized for the packet parsing) requires double
resources and brings only 5.7 % throughput compared to the
Handel-C solution.

A good example of a domain-specific HLS was given by
Attig and Brebner in [1]. They utilize their own Packet Parsing
(PP) language to describe (with the syntactic sugar of an object
orientation) the structure of packet headers and the methods
which define parsing rules. The description is then compiled
from PP to the pipeline stages implementation. However, the
results indicate that the price for a convenient design entry
is the chip area and the latency — most parsers with 1024-
bit datapath use over 10% of the resource-abundant Xilinx
Virtex-7 870HT FPGA [6] and the latency varies from 292 to
540 ns.

The Kangaroo system [7] uses RAM to store the packets
and employs the on-chip CAM to perform a lookahead. Looka-
head is the process of loading several fields from the packet
memory at once, allowing to parse several packet headers in a
single cycle. The dynamic programming algorithm is used to
precompute data structures, so that the parsing of the longest
paths in a parse tree is the most accelerated by the lookahead,
as it is impractical to perform the lookahead for all the possible
protocol combinations. This approach has the architectural
limitation of storing the packets in the memory and accessing
them afterwards. The memory soon becomes a bottleneck. Our
approach, however, parses packets “on the fly”, which means
that the only packet data storage are the pipeline registers.

III. MODULAR PARSER DESIGN

A. Input Packet Interface

We start with the design of an input packet interface,
which conveys packets into (and through) the parser. While the
interface design may seem trivial, it becomes very important
for high bandwidth applications. This is due to the fact that
FPGAs achieve rather low frequency, roughly between 100-
400 MHz. To support the bandwidth over 100 Gb/s, we must
use a very wide data bus (up to 2048 bits). Since the shortest
Ethernet frame is 64 Bytes (512 bits), packet aliasing and
aligning become an issue. Therefore, the achievable effective
bandwidth is considerably smaller than the theoretical raw
bandwidth.

We propose and our packet convey protocol uses two
techniques to utilize the raw bandwidth more effectively than
the standard approach:

e Partially aligned start. The first packet byte may
appear at any position aligned to eight bytes. This
corresponds to the 40 and 100 Gb/s Ethernet standard.
For a data bus wider than 64 bits (8 bytes), this
technique allows the packet to start at other positions

than the first byte of a data bus word.

Shared words. One data word may contain the last
bytes of the packet = and the first bytes of the packet
x + 1. The packets may not overlap within the word

190

and the partially aligned start condition may not be
violated.

Examples of both aforementioned techniques are shown
in the Fig. 1. Using these techniques we bring the effective
throughput for the usual packet length distribution much closer
to the theoretical limit.

in 1 word

[[

Fully aligned start

Partially aligned start
Shared word:

Fig. 1. The example of possible packet positions when using the proposed
techniques for the better raw bandwidth utilization.

B. Parser Submodules

Since we realize that the development of VHDL modules is
rather low-level and often very time-consuming, we continue
with the design of Generic Protocol Parser Interface (GPPI).
This interface provides the input information necessary to
parse a single protocol header: (1) current packet data being
transferred at the data bus, (2) current offset of the packet data
and (3) offset of the protocol header. GPPI output information
includes (4) extracted packet header field values and the
information needed to parse the next protocol header: (5) offset
and (6) type of the next protocol header. Fig. 2 shows how the
modules are connected. By manually adhering to GPPI, we
achieve a hint of object orientation in VHDL — all protocol
header parsers use the same interface (except for the extracted
header fields) and therefore can easily be interchanged if
needed. This improves the code maintainability and enables
the easy extensibility of the parser: any new protocol header
parser is connected just in the same way as the others. This
feature also allows an automatic connection of protocol header
parsers from the high-level structure description.

Pipeline stage Pipeline stage

(optional) (optional)
— Data bus —
| > —>
Data offset
counter
Header \£ Header
type {2 Y type
IPv4 P
—=(3) @ (5
Header i) Header
offset 2 1pve! offset
e e

FIFOs

Parsed fields

Fig. 2. Example of one pipeline stage.

The inner implementation of each protocol header parser is
protocol-specific, but the basic parser block getbyte remains
the same. This block performs waiting for a specific header
field to appear at the data bus, i.e. po+ fo € (do;do + dw),

Session 6A

FPGA & Reconfigurable Systems

where po is the protocol header offset (module input), fo is the
field offset (from the protocol specification), do is the data bus
offset (module input), and dw is the data bus width. Once the
header field is observed at the data bus, it is stored and can be
used to compute the length of the current header, decode the
type of the next header, or any other operation. Fig. 3 shows
the structure of an IPv4 parser as an example.

DATA
DATA_OFFSET

HEADER
_OFFSET
—getbyte —— getbyte ——getbyte getbyte
— O 6,7 9 12-19
4.77 0.3 NEXT_HDR
= —_TYPE
{+1] NEXT_HDR
_OFFSET
MALFORMED FRAGMENTED SRC_DST_IP

Fig. 3. Example of IPv4 protocol parser.

C. Parser Top Level

Our parser can output the information about types and
offsets of protocol headers. This information is more general
than just having the parsed header field values. Obtaining the
header field values can be done later, externally to the parser.
Our parser offers an option to skip the actual multiplexing
of header field values from the data stream. This may save
considerable amount of logic resources and is particularly
useful for applications that read only a small number of header
fields, or when packets are modified in a write-only manner.

Similarly to [1], our parser also uses pipelining to achieve
high throughput. However, every pipeline step in our design
is optional. If many pipelines are enabled, then the frequency
(and the throughput) rises, but also the latency and used logic
resources increase. By tuning the use of pipelines, designer
can find the optimal parameters for the particular use case.

Each protocol parser contains an inner bypass for situations
when its protocol is not present in a packet (not shown in
Fig. 3). Thanks to this bypass, the protocol parser submodules
can be arranged in a simple pipeline with a constant latency.
This property also makes adding a support for new protocols
into the parser stack very easy, without the requirement for
any changes in the existing protocol parsers. Fig. 4 shows the
example top level structure of the parser. Note that the inner
bypasses allow to skip certain protocol headers (e.g. VLAN,
MPLYS), if these are not present in the packet.

The data width required for high throughput (over 100
Gb/s) may be 1024 or even more bits. This implies that there
may be more packets in one data word. Our parser is able
to handle such situation, provided that no two packet headers
of the same type from different packets are present in one
data word. For example, if the data word contains the IPv4
header (and the following bytes) of the packet A, and a part
of the packet B that includes the IPv4 header, then the packet
B is delayed by one cycle in our parser. This situation may
only occur only for wide data buses (512 bits and more), and
short packets (close to minimal length of 64 bytes) with very

191

[[| M
IPv4
IPV6 TCP
Eth VLAN MPLS [T 1 Ext UDP

IPv6 ‘

e

’ Output Logic ‘

Fig. 4. Example of the parser top level structure.

short inter-packet gap. Our measurements of the real high-
speed networks show that it is very rare situation.

IV. CREATING THE PARSER ACCORDING TO THE
APPLICATION REQUIREMENTS

With the description of the parser design, it is rather
straightforward to create own, customized parser. We identify
three basic steps:

e Parser submodules implementation

e Parser top level connection

e Parser state space search

Parser submodules implementation comprises manual
writing of the VHDL code for each supported protocol.
However, GPPI enables easy reuse of the submodules — once
written, the protocol parser submodule can always be reused.
Also, many generic building blocks of the submodules are
already available, for example the getbyte module, which
extracts a single byte at a certain offset from the packet.
In general, the parser submodules for the common protocols
are very similar and follow the same informal code template.
For many today’s protocols the parser submodule is only the
getbyte modules with correctly configured offsets and some
protocol-specific logic to compute the information about the
next protocol from the extracted fields. Therefore, one can
easily create a parser submodule implementation from the
protocol structure specification.

There is also a space here for manual optimizations. For
example, extracting a byte from the data bus using the getbyte
normally requires a full multiplexer, which is able to extract
a byte from any byte position in the data word (Fig. 5a).
The multiplexer is controlled by the current data bus offset,
the offset of a header within the packet, and the offset of
the desired field within the header (which is often constant).
However, given the fact that a packet may start only at certain
positions in the data word, the current data offset may contain
only the values with the corresponding resolution. Also, we
can often derive all the possible offsets of the packet header
from the analysis of all the possible orderings and sizes
of the protocol headers appearing in the packet before the
current protocol header. Combining the three values (data
offset resolution, possible header offsets, constant field offset)
together, we can use simpler multiplexers, which do not allow
to extract fields from impossible positions. The use of simpler
multiplexers in getbyte, together with the fact that getbyte

Session 6A

FPGA & Reconfigurable Systems

modules form the main core of the protocol analyzing and
data extracting, result in significant chip area savings. For
example in a classical TCP/IP protocol stack, header lengths
are multiples of 4. Therefore, the size of multiplexers can be
reduced 4 times and the size of the whole parsing logic by
nearly the same amount. This is illustrated in the Fig. 5.

Lo] 7] xIxalx]x]x]e [x]

1]2[3]a]5]s]
s LI

(a) ‘ (b)

Fig. 5. Example of 64b getbyte multiplexer: full (a) and optimized (b).
Parser top level connection once again requires the
designer to write VHDL. In this case, the protocol submodules
are connected via GPPI pipelines to the structure correspond-
ing to the expected order of the protocol headers in packets.
Extracted header field values can be stored in output FIFOs.

Parser state space search is the final step. It takes into
account other parser requirements than a set of supported
protocols. The state space is created by the selective bypassing
of pipelines and by setting the data width of the packet convey
protocol (all easily set by generic parameters).

For example, there is often a requirement on the through-
put. In that case, we are looking for a parser with throughput
equal or higher than the requirement. By synthetizing a parser
with all the possible settings and ruling out those which do
not satisfy the throughput requirement, we obtain a set of
satisfying solutions. However, the solutions will differ in the
size of chip area and in latency. From this set we select a Pareto
set, which contains only the dominating solutions (those for
which there is no better solution in both chip area and latency).
If the Pareto set has more than one member solution, we have
to decide which parameter (area or latency) is more important
for our application.

Generally, each candidate solution creates one point in the
3-D space with dimensions throughput, area and latency. Each
pipeline step and each data width option double this space,
possibly ending in a situation when the exhaustive search is
no longer possible, taking into account that a single synthesis
run takes time in the order of minutes. In that case we suppose
that some global optimization algorithm, such as simulated
annealing or a genetic algorithm can be used. Good heuristic
helping these algorithms could be to rule out some of the
pipeline positions, more precisely to place the pipelines evenly
in the parser to create evenly long critical paths.

A. Implications for High Level Synthesis

After identifying the steps needed to be performed manu-
ally, we can now provide a list of features desirable for a good
HLS, general or platform specific:

e Way to describe parser interface and protocols.

e Way to specify header formats and their dependency.

e Automatic inference of logical constraints (for multi-

plexer simplification etc.).

Generator of parametrized code.

e Way to describe the design goals (area, latency etc.).

e The best fitting solution finder (exhaustive/heuristic).

Note that these requirements do not imply any particular
type of a parser. Such HLS may generate pipelined parsers
similar to ours, or the parsers based on a completely different
paradigm (e.g. FSM or processor+code).

V. RESULTS

We have implemented a parser supporting the following
protocol stack: Ethernet, up to two VLAN headers, up to
two MPLS headers, IPv4 or IPv6 (with up to two extension
headers), TCP or UDP. (see Fig. 6). The parser is able to extract
the classical quintuple: IP addresses, protocol, port numbers.
Apart from that, it can also provide the information about
present protocol headers and their offsets including the payload
offset.

We have tested properties of the designed parser with 3
different protocol stacks:

full — Ethernet, 2x VLAN, 2xMPLS, IPv4/IPv6 (with
2x extension headers), TCP/UDP

IPv4 only — Ethernet, 2x VLAN, 2xMPLS, IPv4,
TCP/UDP

simple L2 — Ethernet, IPv4/IPv6 (with 2xextension
headers), TCP/UDP

For each mentioned protocol stack, one test case is done for
the parser with the logic to extract the classical quintuple and
one for the same parser without the extraction logic (providing
only the offsets).

192

Fig. 6. Structure of supported protocols (full protocol stack).

We provide the results after a synthesis for the Xilinx
Virtex-7 870HT FPGA, with different settings of the data width
and the number of pipeline stages. These settings, together with
the resulting frequency, latency and resource usage, generate a
large space of solutions, in which the Pareto set can be found
and used to pick the best-fitting solution for an application. In
each test case, we use 5 different data widths: numbers from
128 to 2048 bits that are powers of 2. For each data width,
every possible placement of pipelines for the tested protocol
stack is shown as a point in the graph and the Pareto set is
highlighted. Points representing results for each data width are
shown in different shapes and colors.

For each test case we provide 2 graphs: the first one
shows the relation between throughput and FPGA resources
with the Pareto set highlighted, without any regard to latency.
The second graph shows the relation between throughput and
latency with the Pareto set highlighted, without any regard

Session 6A

FPGA & Reconfigurable Systems

to FPGA resources. In the graph with the relation between
throughput and FPGA resources, the second Pareto set (the
lower, dashed curve) is also shown. This Pareto set shows the
best achievable solutions for our parser without the quintuple
extraction logic. Similar Pareto set is not shown in the graph
with the relation between throughput and latency, because the
usage of the quintuple extraction logic affects the latency of
the parser only slightly (the critical paths are mostly in the
next header computation logic).

Fig. 7 shows the throughput and the FPGA resources and
Fig. 8 shows the throughput and the latency for the full
protocol stack. There are 9 configurable pipeline positions in
the parser implementing the full protocol stack. This leads to
512 different possible placements of pipelines in this parser
for each data width. Mentioned graphs therefore show results
for 2560 different solutions with the Pareto sets highlighted.

For a comparison of the achieved Pareto set results for dif-
ferent protocol stacks, we provide graphs in Fig. 9 (throughput
and FPGA resources) and the Fig. 10 (throughput and latency).
From these figures one can clearly see that the supported
protocol stack can rapidly change the parameters of the parser
in terms of chip area and latency. Therefore, a careful protocol
support selection is very important for the optimal result. For
example, just by turning off the IPv6 support we can bring
down the resource utilization by almost 50 %. Latency, on the
other hand, is sensitive to the depth of the protocol stack, (see
Fig. 6) therefore turning off the support for the VLAN and
MPLS headers lowers the latency significantly.

A closer look at the Pareto set optimized for latency and
throughput (without regard to FPGA resources) from Fig. 8 is
presented in Tab. I. The last line of the table is the estimation of
the parser from [1] with similar configuration of the supported
protocols (TcpIP4andIP6). It is obvious that our parser can
achieve much better parameters than the parser from [1].

Data | Pipes | Throughput | Latency | LUT-FF
Width [Gb/s] [ns] pairs

256 0 14.5 17.1 3238

512 0 28.4 18.0 4053
2048 0 96.9 21.1 17685
2048 1 158.5 259 18547
2048 2 212.8 28.9 18317
2048 4 333.0 30.8 21775
2048 5 352.0 349 22373
2048 7 453.0 36.2 26728
2048 8 478.1 38.6 29301
1024 ? 325 309 67902

TABLE L. PARETO SET FOR THE BEST THROUGHPUT AND LATENCY OF

THE FULL PROTOCOL STACK PARSER

Next, we provide the data for the example from the
Section IV: Given a set of supported protocols and the target
throughput, find all solutions in the Pareto set. We use three
sets of supported protocols mentioned earlier and the target
throughputs of 40, 100 and 400 Gb/s. All nine Pareto sets are
shown in the Fig. 11. Note that while there are several solutions
with the throughput over 400 Gb/s, there is only one 400 Gb/s
Pareto solution for each protocol set, which means that the
other solutions are not better in terms of FPGA resources
nor latency. For the other target throughputs, the designer
can choose the appropriate solution according to application
priorities.

193

10*

= N w
o0 N il w n

LUT-FF pairs

0.5

— Pareto set
* 128b
* 256b
+ 512b
= 1024b
4 2048b
.. Pareto set
(no ext.)

160 200 250 300 350 400
Throughput [Gbps]

I
450

500

Fig. 7. The FPGA resource utilization for different settings of the full parser.

100 T

Latency [ns]

20|

Fig. 8.

@
=]

IS
o

80 1 Atyra

—Pareto set|
* 128b
* 256b
¢+ 512b
= 1024b
A 2048b

200 250 800 350 400
Throughput [Gbps]

100 150
The latency for different settings of the full parser.

10*

I
450

500

N
il

N

—Full
__Ful

(no ext.)
—Only IPv4
...Only IPv4

(no ext.)
—Simple L2
...Simple L2
(no ext.)

LUT-FF pairs
&

200 250 300
Throughput [Gbps]

I I I I
150 350 400 450 500

Fig. 9. Comparison of the FPGA resource utilization versus throughput Pareto
sets for the tested protocol stacks.

40

—Full
—Only IPv4
—Simple L2

Latency [ns]
S

0 50

Fig. 1
tested

I
100

0.
protocol stacks.

I
150

200 250
Throughpu

3
t[Gb

00
ps]

|
350

I
400

I
450

500

Comparison of the latency versus throughput Pareto sets for the

Session 6A FPGA & Reconfigurable Systems
3 _lf’;u” T This work also presents the methodology of a modular
~-Full, 100 Gbps a parser design and demonstrates the need for a thorough ex-
29 :gﬂ:ﬁg&‘?ig;bps) ploratﬁo.n. of the solgtion space. Moreover, it suggests several
0 » Ign:y IPv4, 100 ggps . | capabilities that a High-Level Synthesis system should possess
§ _._Si?nyme]’_zj 40 Gbpzs - to succeed in area of packet parsers creation.
15| < omploLo 400 opgl .
= ’ ACKNOWLEDGEMENT
o 1F 4
\ This research has been supported by the “CESNET Large
0.5¢] Infrastructure” project no. LM2010005 funded by the Mi-
— nistry of Education, Youth and Sports of the Czech Republic,
% 5 10 1s ! ‘ % & 0 the “DMONI100” project no. TA03010561 funded by the

20 25
Latency [ns]

Fig. 11. Pareto sets for three given protocol sets and three target throughputs.

A careful design space exploration is very important for
our parser. For example, the parser of the full protocol stack
optimized for the latency uses 17685 LUT-FlipFlop pairs to
achieve near 100Gb/s throughput with the latency of only
21.1ns (see Tab. I), while the parser optimized for resources
uses only 6 536 LUT-FlipFlop pairs to achieve the throughput
just over 100 Gb/s, but with the latency of 35.8 ns (see Fig. 11).

Finally, Fig. 12 illustrates the complete Pareto set of
solutions in the (latency, throughput, area) space for the full
protocol stack. To create the 3D surface in the figure, the
bottom (latency, throughput) plane was divided into rectangles
of sizes (1 ns x 10 Gb/s) and the smallest solution that
satisfies the required latency and throughput was found for
each rectangle. Therefore, each horizontal level of the surface
represents one solution from the Pareto set. Finer-grained
division of the (latency, throughput) plane would result in more
solutions, but also in less readable image.

LUT-FF pairs

Latency [ns]

Throughput [Gbps]

Fig. 12. 3D surface plot of the Pareto set

VI. CONCLUSION

This paper introduces a highly configurable packet parser
for FPGA, which achieves throughput in the range of tens to
hundreds of Gb/s and is usable in a variety of applications.
The key concept is a selective pipelining, which allows to
find the best fitting solution with regards to the requirements.
The parser uses only 1.19 % of the Virtex-7 870HT FPGA
resources to achieve a throughput over 100 Gb/s and 4.88 %
for a throughput over 400 Gb/s, which leaves most of the
FPGA resources free for implementing other functions of
target applications.

Technology Agency of the Czech Republic, BUT project
FIT-S-14-2297 and the IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] M. Attig and G. Brebner, “400 gb/s programmable packet parsing on
a single fpga,” in Architectures for Networking and Communications
Systems (ANCS), 2011 Seventh ACM/IEEE Symposium on, oct. 2011,
pp. 12-23.

[2] F. Braun, J. Lockwood, and M. Waldvogel, “Protocol wrappers for
layered network packet processing in reconfigurable hardware,” Micro,
IEEE, vol. 22, no. 1, pp. 66-74, 2002.

[3] P. Kobiersky, J. Kofenek, and L. Pol¢dk, “Packet header analysis and
field extraction for multigigabit networks,” in Proceedings of the 2009
12th International Symposium on Design and Diagnostics of Electronic
Circuits&Systems, ser. DDECS. Washington, USA: IEEE Computer
Society, 2009, pp. 96-101.

[4] T.Dedek, T. Martinek, and T. Marek, “High level abstraction language as
an alternative to embedded processors for internet packet processing in
fpga,” in Field Programmable Logic and Applications, 2007. FPL 2007.
International Conference on, aug. 2007, pp. 648—651.

[5] “Xilinx microblaze soft processor,” Xilinx, Inc.,
http://www.xilinx.com/tools/microblaze.htm.

[6] “Xilinx virtex—7 fpga family,” Xilinx, Inc.,
http://www.xilinx.com/products/silicon-devices/fpga/virtex-7.

[7]1 C. Kozanitis, J. Huber, S. Singh, and G. Varghese, “Leaping multiple
headers in a single bound: Wire-speed parsing using the kangaroo
system,” in JEEE INFOCOM, mar. 2010.

194

