
Session 5B (Student Session) Digital 

179978-1-4799-4558-0/14/$31.00  ©2014 IEEE

CRC based hashing in FPGA using DSP blocks

Tomáš Závodnı́k
Faculty of Information Technology

Brno University of Technology

Božetěchova 2, 612 66 Brno, Czech Republic

Email: xzavod12@stud.fit.vutbr.cz

Lukáš Kekely, Viktor Puš
CESNET a. l. e.

Zikova 4, 160 00 Prague, Czech Republic

Email: kekely,pus@cesnet.cz

Abstract—We propose a novel approach to the computation
of the CRC functions, commonly used for bit error checking
purposes when handling binary data. This approach is designed
for general hashing purposes in FPGA, for which the CRCs are
usable as well. The method is suitable for applications which use
parallel inputs of fixed size and require high throughput, such
as hash tables. We employ the DSP blocks present in modern
FPGAs to perform all the necessary XOR operations, so that our
solution does not consume any LUTs. We propose a Monte Carlo
based heuristic to reduce the number of the DSP blocks required
by the computation. Our experimental results show that one DSP
block capable of 48 XOR operations can replace around eleven
6-input LUTs.

Keywords—FPGA; CRC; DSP; Hash

I. INTRODUCTION

The Cyclic Redundancy Check functions (CRCs) are
widely deployed in digital communications and storage to
detect accidental data corruptions. The binary data being
handled are subjected to a CRC which results in a fixed-length
binary check sequence. The check sequence is then attached to
the original data and serves to derermine its correctness. After
being processed, the data are subjected to the CRC one more
time and the result is compared to the attached check sequence.
In case of match, the data, most likely, were not corrupted. The
CRCs are based on the remainder of a polynomial division
and each one of them defines a specific dividing polynom
and output width. Because of their simple implementation in
hardware and good characteristics, the CRCs are very popular.

Common ways to implement lookup operations in FPGA
are hash tables and their variations. The process of adding
to, deleting from, and searching in the hash table uses one
or more hash functions to compute the address to the table.
A suitable hash function must meet statistical properties such
as uniform distribution, use of all input bits, large change
of output based on small change of input. These properties
are further described in [1]. Other desirable parameters when
implementing a hash function in FPGA are high throughput
and low resources usage.

The hashing task of a hash table in FPGA can be met
by a CRC function, for example the CRC-32 function. The
CRCs generate fixed-length binary values that can be used to
address a hash table cell. Additionally, their implementation
requires only few resources. The statistical properties of the
CRC-32 function have been thoroughly examined and the
results confirmed that the CRC-32 can meet the requirements

for a suitable hash function. Further details can be found for
example in [2].

Unfortunately, the implementation of the CRCs for hashing
purposes is often suboptimal due to its origins in bit error
checking modules. The CRC functions were originally de-
signed to check for bit errors in variable-length data transmis-
sions and not to compute a hash of fixed-length data. Conse-
quently, the implementation may not meet some requirements,
especially the throughput, and therefore must be revised.

II. HASHING USING CRC

As mentioned, a CRC function can be succesfully used
for general hashing purposes. However, the common imple-
mentations of the CRCs are focused on variable-length data
processing in bit error checking modules. This is considered
a drawback when designing a hash function that computes
indexes to a hash table based on fixed-length keys.

In bit error checking modules, the input is subjected to
a CRC function to compute the check sequence. To support
variable-length data (such as Ethernet frames), the input is
passed in form of a stream of bits that are processed one
by one. Every bit is processed in a separate clock cycle and
therefore the intermediate result is ready in the next cycle.
Such approach, though, cause the overall latency to be as long
as the number of bits being processed, without any possibilities
to increase the throughput.

The described method of data processing suitable for a
bit error checker is entirely inappropriate for a general hash
function. Indexes to a hash table are computed by a hash
function on the basis of fixed-length values passed each in
one clock cycle. The inputs to the hash function need to be
processed with the highest throughput possible to assure high-
speed access to the hash table. The overall latency, on the other
hand, is not as critical and pipelining is allowed. To fulfill
these requirements, the method to compute the CRCs must be
redesigned to support fast processing of parallel inputs.

III. COMPUTATION OF CRC

The computation of a CRC can be done with two ap-
proaches. Both ways of the computation fundamentally differ
from each other, offer distinct characteristics and lead to
divergent implementations.

The classic way (derived directly from the CRCs definition)
is based on a linear feedback shift register (LFSR). A LFSR
is entirely serial and processes bit by bit. This approach978-1-4799-4558-0/14/$31.00 c©2014 IEEE

CRC Based Hashing in FPGA Using DSP Blocks



Session 5B (Student Session) Digital 

180

Fig. 1. Linear feedback shift register (LFSR) for CRC-5

requires minimal resources and assures high frequencies, but
is only applicable on bit streams. The throughput is directly
limited by the FPGA working frequency. The serial approach is
therefore unsuitable for general hashing in most applications.
An example LFSR for the CRC-5 is shown in the Fig. 1.

The second approach involves parallelism and is capable of
performing operations with more input bits within one clock
cycle. The parallel approach is based on equations set up for
each output bit in compliance with the classic LFSR way
of computation. The equations are typically in the form of
wide XOR (exclusive OR) operations. Each output bit can be
therefore described as a selection of input bits to be XORed.
The construction of the equations is described in detail for
example in [3]. The resulting equations are then used to
build computational structures (trees). Taking advantage of the
parallelism, the overall latency can be significantly reduced and
the throughput improved at the cost of additional resources.

A. Parallel computation approach

When implementing the parallel CRC computation us-
ing the FPGA technology, several types of resources can
be employed. Modern FPGAs offer a variety of specialized
blocks, such as DSP slices or BlockRAMs, which can be used
alongside the general logic.

The general FPGA logic, formed by look-up tables (LUTs),
is the most common way of a CRC implementation. Each LUT
in a modern FPGA is able to realize any binary function of
six inputs, including the exclusive OR (XOR). In the context
of a CRC, this usually means that one LUT computes five
binary XOR operations. The implementation in LUTs brings
some advantages including the possibility to use the prepared
equations directly without any modifications. This can be done
due to engaging the HDL to FPGA synthesizer’s internal
optimizer to build up the logic implementation. However,
this way of implementation may not be appropriate when the
number of LUTs is a limiting factor of the firmware design.

We propose another way to implement the computation. It
is based on the use of specialized digital signal processing
slices (DSPs). The DSP slices are present in most current
FPGAs, yet remain largely unused in some applications, such
as communications and networking. In this paper we are
working with the DSP slices present in Xilinx FPGAs. Each
DSP slice is (among other operations) capable of performing
48 parallel 1-bit exclusive ORs, which are essential for the
computation of a CRC. When using the DSPs we can not

count on automatic optimizations and must manually create
the computational trees. The trees’ structure is fundamental for
the optimality of the computation. The minimal tree height is
computed as ⌈log2(n+1)⌉ where n is the number of elements
of the longest original equation. While the height is determined
by the longest equation and can not be reduced by using DSPs,
the tree’s width offers a large space for optimization and should
be considered in relation to the amount of required resources.

B. Optimizing DSP implementation

The original equations share some bit operands, which
results in performing the same operations multiple times. In
other words, the computational trees contain some common
sub-trees when the operations associated with them can be
performed only once. The objective is to build the computa-
tional trees to contain as many common sub-trees as possible
in order to remove redundant operations (or duplicates) and
save resources.

1) Basic optimization: The first step to reduce the resources
could be building the computational trees upon equations with
their bit operands in ascending or descending order accordingly
to their position in the input word. This operand rearrangement
is possible due to the fact that the equations use only the XOR
operation, which is commutative and associative. Because of
similarities among the equations with sorted operands, this
approach is capable of revealing a significant part of common
computational sub-trees and contributes to the reduction of
resources. Although the operand ordering is an easy way of
optimization, it is a blind and locally driven approach and most
likely will not result in optimal computational structures.

2) Proposed heuristic: We propose a solution leading to
better results that introduces actual global relations between the
original equations into the optimization process. Our approach,
built on a version of Monte Carlo method, uses randomness
tied to a large number of experiments. Concretely, we propose
to build the computational trees by choosing random pairs of
bit operands from a random original equation and tying them
to the target tree. If another equation contains the same pair of
operands, this pair would be tied to the corresponding tree
as well to form a common sub-tree designated to removal
during an optimization process. This approach successively
leads to forming larger common sub-trees and to allowing
deeper optimization by offering the best of many results.

The building of the computational trees is described by
the Algorithm 1. It starts with the original equations as inputs
and empty trees as outputs. The entire process is done in
several steps resulting each to a lower level of the trees being
generated. During each step we choose a random (not empty)
input and then select a couple of random bit operands it
includes. If there is only one bit operand left, it is associated
to a XOR-neutral 0. This operands couple is removed from all
inputs containing it and tied to the corresponding trees as a
sub-tree representing a XORing operation with the operands
and its result. The results are conserved and enter the next
building step as inputs when the current one is over. Each
step is finished when all its inputs contain no operands to
process. The building process continues until all computational
trees are complete. When the trees are built, all common sub-
trees are removed and replaced by only one sub-tree for each



Session 5B (Student Session) Digital 

181

Algorithm 1 Computational trees building algorithm

1: level inputs = orig equations;
2: trees = empty trees;
3: repeat
4: while level inputs not empty do
5: couple = get random couple(level inputs);
6: for all level input from level inputs do
7: remove from level input(couple);
8: result = trees add subtree(couple);
9: append to level output(result);
10: end for
11: end while
12: level inputs = level outputs;
13: until trees complete
14: trees = eliminate duplicates(trees);
15: score = evaluate optimality(trees);

Fig. 2. Computational trees building process example

distinct involved operation. Finally, we compute the number
of DSPs required to build the resulting computational trees
and transform it into an optimality score. The less DSPs are
needed, the higher the score is. An example process is shown
in the Fig. 2.

The whole building process is repeated many times accord-
ingly to the Monte Carlo method. The final result is chosen
from all generated outputs as the one with the highest opti-
mality score, which assures the highest reduction of resources.
The output is written in the form of complete VHDL source
code, which is ready for use in any firmware. The generator
polynomial and the input data width are fixed, but the use of
the DSPs’ internal pipelining registers is optional via generic
parameters. This allows to tune the frequency and the latency
of the final CRC computation.

IV. RESULTS

We use the CRC-32 for our experiments. This is one of
the most common CRCs, using the generator polynomial of
x
32 + x

26 + x
23 + x

22 + x
16 + x

12 + x
11 + x

10 + x
8 + x

7 +

TABLE I. RESOURCES REQUIREMENTS FOR CRC-32

Input width 128 b 256 b 512 b 1024 b

LUTs with

auto-optimization
347 711 1314 2433

DSPs with

no optimization
45 87 172 344

DSPs with

duplicates elimination
43 85 169 342

DSPs with

operands ordering
33 63 122 241

DSPs with

proposed heuristic
30 58 113 227

x
5 + x

4 + x
2 + x + 1. The output of the CRC-32 is 32 bits

wide, which suffices for most hash table applications, since
it is capable of addressing 232 items. Our method is however
generic and can be used for any other generator polynomial.
The synthesis results are from Xilinx ISE 14.6.

A. Using LUTs

When implementing the parallel CRC computation by
using the general FPGA logic (LUTs), the computational
structures are automatically created by the synthesizer with
all the important optimizations being included. The concrete
quantitative results for the CRC-32 are shown in the Table I
(LUTs with auto-optimization), including numbers of LUTs
required for different input widths. The resources requirements
rise nearly linearly with the increasing number of input bits
and become significant when this number is high. In that case,
it is important to decide if such resource usage is acceptable
or not. Thanks to the parallelism and simple operations being
performed, the theoretic latency of such implementation is only
a few nanoseconds (considering Xilinx Virtex-7 FPGA).

B. Using DSPs

The implementation in the DSPs is not as straightforward,
which is caused mainly by the need of manual optimizations.
When building the CRC-32 computational trees by using the
ASAP scheduling and omitting any optimizations, we get the
results that are shown in the Table I (DSPs with no optimiza-
tion), including numbers of DSPs required for different input
widths. The resources requirements rise almost linearly with
the increasing number of input bits as in the case of LUTs.
Notice that no LUTs are involved.

When using DSPs, some latency issues should be con-
sidered. Latency of such implementation is about four times
longer than the latency of the implementation using LUTs. To
get an acceptable frequency, pipelining can be engaged but
the total latency increases because of additional registers. On
the other hand, pipelining is natively supported by the DSPs
(no CLB flip-flops are used) and can be used as advantage
in applications that use pipelining and do not require low
latencies.

1) Duplicates elimination: When we introduce the elimina-
tion of common sub-trees (or duplicates) in the computational
trees, the numbers change. Eliminating the sub-trees cause a
reduction of required resources, which, however, is only slight
and demands improvement. The exact numbers for the CRC-32
are shown in the Table I (DSPs with duplicates elimination).



Session 5B (Student Session) Digital 

182

TABLE II. DSP TO LUT CRC-32 COMPARISON

Input width 128 b 256 b 512 b 1024 b

XOR (LUTs) 1735 3555 6570 12165

XOR (DSPs) 1440 2784 5424 10896

XOR/bit (LUTs) 13.55 13.88 12.83 11.87

XOR/bit (DSPs) 10.25 10.87 10.59 10.64

LUT/DSP 11.56 12.25 11.62 10.71

227 228 229 230 231 232 233

0

1

2

3

4

5

·10
4

Number of DSPs needed

N
u
m
b
er

o
f
ex
p
er
im

en
ts

Fig. 3. Experimental histogram of the proposed heuristic for CRC-32 with
1024 input bits

2) Basic optimization: Building the computational trees
upon the original equations with their bit operands arranged in
ascending order brings a large improvement. The number of
required DSPs decreases by tens of percents. The resulting
values can be seen in the Table I (DSPs with operands
ordering). Despite the reduction, when we consider the nature
of this method, we notice that it can not be optimal.

3) Proposed heuristic: When using our proposed solution,
we are able to decrease the resources requirements even
more. By connecting the randomness to the large number
of experiments and the global equation’s relations, we get a
powerful tool that is able to bring better results. The results for
the CRC-32 from a hundred thousand experiments are shown
in the Table I (DSPs with proposed heuristic). We managed to
achieve an additional and stable reduction of resources, which
is visible in the experimental histogram (Fig. 3).

4) Comparison to implementation in LUTs: While our
results can not be directly compared to the implementation
using LUTs, we can use an indirect comparison. Given the
fact that a 6-input LUT can compute five XORs (XOR of
all six input bits in any order), we can compute the number
of XOR operations needed for the whole computation for
both implementations in LUTs and DSPs. This can be further
related to the number of input bits. The results for the CRC-32
are shown in the Table II. We compare only the best of our
solutions (the last line of the Table I).

One can see that our solution saves around 11 LUTs per
DSP block. Our XOR per input bit ratio is even better than
that of synthesizer optimized LUT-based implementation. This
is caused by the fact that our heuristic is specifically tailored
to the particular domain and it performs a very intensive state
space searching. Even if the state space searching can become
time-consuming, it is performed only once and may reduce the
time needed by the place and route process.

V. RELATED WORK

One of the most advanced general logic CRC implemen-
tations for FPGAs is described in [4]. It uses pipelining to
achieve higher frequencies than the simple solution optimized
by the synthesizer. The implementations of the CRC-32 for the
input data width of 128 and 256 bits can run over 500MHz
and require 458 and 909 LUTs respectively at Virtex-6 FPGA.

Since the FPGA chips offer specialized logic blocks, there
have been attempts to use them in various applications instead
of the general logic. With focus on the hash functions, we
can find solutions using diverse specialized blocks like DSPs
or block memories to implement different cryptographic func-
tions. The solution described in [5] uses block memories to
store round constants, S-box and T-box tables and message
expansion tables for the computation of various SHA-2 and
SHA-3 functions. DSPs are used to compute sums in some
of these functions. There are no available solutions using
specialized blocks to implement the CRC based hashing.

VI. CONCLUSION

Our contribution is the design and experimental evaluation
of the CRCs computation using the DSP FPGA blocks. This
approach can be very useful in applications using hash tables
and when the number of utilized LUTs needs to be reduced in
order to fit another functionality to the firmware. Our solution
is based on the capability of the DSP blocks to perform a
large number of binary XORs. By using the Monte Carlo based
heuristic, we are able to substitute around 11 LUTS by one
DSP block. Our results further show that our solution performs
less XOR operations than the solution with LUTs optimized
by the synthesizer.

ACKNOWLEDGEMENT

This research has been supported by the BUT project
FIT-S-14-2297, “CESNET Large Infrastructure” project no.
LM2010005 funded by the Ministry of Education, Youth and
Sports of the Czech Republic and the “DMON100” project no.
TA03010561 funded by the Technology Agency of the Czech
Republic.

REFERENCES

[1] D. E. Knuth, The art of computer programming, volume 3: (2nd ed.)

sorting and searching. Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 1998.

[2] B. Mulvey, “Hash functions,” http://home.comcast.net/∼bretm/hash/,
2010, [Online].

[3] A. Perez, “Byte-wise crc calculations,” Micro, IEEE, vol. 3, no. 3, pp.
40–50, 1983.

[4] H. F. A. Hamed, F. Elmisery, and A. A. H. A. Elkader, “Implementation
of low area and high data throughput crc design on fpga,” International

Journal of Advanced Research in Computer Science and Electronics

Engineering (IJARCSEE), vol. 1, no. 9, 2012. [Online]. Available:
http://ijarcsee.org/index.php/IJARCSEE/article/view/247

[5] R. Shahid, M. Sharif, M. Rogawski, and K. Gaj, “Use of embedded
fpga resources in implementations of 14 round 2 sha-3 candidates,” in
Field-Programmable Technology (FPT), 2011 International Conference

on, 2011, pp. 1–9.


