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Abstract—Network traffic monitoring requires the collection
of information exported from network observation nodes. Given
the significant increase in the amount of information collected
it is necessary to consider utilization of big data framework for
collecting and querying the stored data. This work describes our
approach to evaluate frameworks from the perspective of their
fitness to the basic collector tasks. We evaluate three big data
frameworks and compare them with our MPI implementation.

I. INTRODUCTION

An abstract yet detailed network traffic visibility (e.g. via
NetFlow [1]], IPFIX [2]) is a key prerequisite to network man-
agement including tasks such as traffic engineering, applica-
tion performance monitoring and network security monitoring.
In the recent years the volume of collected information has
grown significantly due to the cloud services, mobile traffic,
mutli-media content, network threats as well as higher link
throughput. While there are probes that are capable of flow
monitoring at high link speeds [3], naturally, there is a need
for a high-performance flow collector.

The flow collector performs basic tasks such as receiving
and storing incoming stream of flow records so as to avoid
data loss and answering ad hoc user queries. Additionally, the
collector may also assemble periodic reports and perform data
analysis (e.g. network behavioral analysis).

The goal is to capture by experiments basic characteristic
of several big data frameworks in the view of the two basic
collector tasks, storing and querying large sets of flow records.
We experiment with Hadoop and its extensions, ElasticSearch
and Vertica. We hope that these experiments will simplify
decision whether to use these frameworks as an underlying
technology of the distributed flow collector or in case of
similar applications. Our experiments deliberately omits the
additional collector tasks as these are ussualy handled by
different type of technology (e.g. stream processing such
as DBStream, Spark), in the so called lambda architecture.
Moreover, these stream processing engines were already to
evaluated for these tasks.

The rest of the paper is organized as follows. Related
work on big data frameworks and benchmarks is discussed
in Section [lI} Section [IIIf describes the goals of the proposed
experiments as well as the experiments themselves. Section [[V]
evaluates the frameworks and gives comparison with our MPI
solution. The paper is concluded with summary and future
work in Section [V

II. RELATED WORK

The collector exhibits several specific characteristics which
often renders traditional tools ineffective:

o constantly arriving flow records at high rate (hundreds
of thousands up to several million of flow records per
second),

o profiling of arriving data leading to data multiplication,
hence increased load on the storage system,

e in parallel to the previous, periodic batch processing
(ussually 5 minutes) and/or stream analysis,

« in parallel to the previous, ad hoc user queries targeting
up to 3 months history [4].

We can observe the effort to improve network collectors
since their performance was not sufficient to handle growing
amount of network data. The question of which data pro-
cessing system is suitable for a NetFlow processing appears
already in the work by Hofstede et al. [5]. They compared
a flow processing speed of NfDump and MySQL database.
Giura [6] has investigated possibility to utilize columnar
database and proposed several optimizations. Various database
engines were also compared in [7]]. Nevertheless, these were
solutions running on a single machine with none or poor
support for distribution. With the advent of the MapReduce
computation concept [8], novel distributed data processing
systems were introduced with Hadoop [9] at the forefront.
It enabled a development of flow data tools [10[], [1L]], [12].

The benchmarking of big data frameworks plays an im-
portant role not only in design decisions but also during
optimization. HiBench [13] is a benchmark suite dedicated for
Hadoop MapReduce and Hive consisting of several Hadoop
synthetic as well as real world applications. It allows user to
measure various statistics and optimize configuration of partic-
ular deployment. Another benchmark for Hadoop MapReduce
is GridMix [14]] with tasks for text data.

Big data bench [15] is a general benchmark designed to
evaluate big data frameworks. It selects several Internet service
datasets, however, the closest available dataset to flow data set
is e-commerce and it is several orders of magnitude smaller
than the dataset we aim for as well as the operations and hence
the workload differ. As Chen et al. has shown in [16] only real
data and workload can reveal the real system characteristics.
Therefore the real world data and workload is preferred in
big data benchmark [[17]]. Since the benchmarks are general



and/or focused on a single framework, we decided to conduct
our own specific experiments to reveal characteristics of the
big data frameworks from the perspective of flow data queries
and flow data storage.

III. EXPERIMENTS
A. Goals

The goal of our experiments is not to evaluate robustness
such as consistency, availability or partitioning characteristics
of the frameworks. These characteristics can be evaluated by
the benchmarks such as [[15]. Our experiments rather focus on
performance and look for answers to questions such as:

a) How fast can the framework retrieve flow records
stored on the disks: The queried data volume (flow records)
ussually exceeds the amount of available memory and together
with the ad hoc nature of queries prevents disk caching. Thus
it is utterly important that the evaluated framework exploits
full throughput of all the disks available to the framework.

b) How large is the overhead of the framework: Current
single-node collectors are often well-tuned systems. Any over-
head renders it less responsive for its potential user. Naturally,
users are ready to tolerate proportional reponse time to the
amount of data queried. Any overhead of the framework
that exhibit itself especially during queries targeting small
amount of data renders the framework infeasible as a basis
for collector.

c) Is it possible to store flow records as they come without
a loss: The collector must process constantly arriving stream
of flow records. In large deployment the number of arriving
flow records may easily exceed 1 mil. flow records per second
especially during DoS attacks and it is very important for post
mortem analysis that the framework does not collapse in case
of an overload and remains its peek performance.

d) Is it effective in small as well as in large deployments:
The collector must scale from just several nodes up to tens of
nodes. A universal collector is better then dedicated collectors
for small and large deployment. Moreover, it is often the case
once the network monitoring is deployed on one link the
improved visibility of the network drives further deployments
of probes resulting in growing number of flow records anyway.

B. Data set

The data set contains flow records, for the purpose of our
experiments, a flow is defined as a set of packets identified by
the same 5-tuple — IP addresses, port numbers and protocol.
We propose to utilize simplistic flow records consisting of the
following items:

¢ source and destination IP address,

« source and destination IP ports,

¢ protocol,

o start and end timestamp,

« number of packet and bytes,

o TCP flags.

We utilize such a basic record to simplify obtaining the
data sets as these items are, in most cases, always available
in the exported flow records. We are aware that the collector

must potentially deal with more complex flow records such
as VLAN tags, MAC addresses, user identifiers as well as
L7 fields of variable length such as url, dns answers, sip
identifiers. However, the core functionality of the collector
rests in quering the basic flow records as there is only a
minority of probes capable of reporting L7 fields, moreover,
the L7 fields will be less and less reported with the increasing
penetration of encryption.

The data set is sliced into 24 subsets. Each subset contains
previous subset plus 1 hour increment, i.e. subsets with size
1724, 2/24, ... 24/24 of the whole set were created. As a result 1
hour increment is an average number of flow records collected
throughout a single day and deliberately does not correspond
with the actual time.

C. Queries

In order to evaluate ad hoc user queries we have collected
history of the queries at the collector. We selected four queries
that in their nature capture typical queries and operations
utilized during flow data analysis. The selected queries are
of the increasing complexity.

o Number of all flows, packets and bytes in the data set.

o Number of all flows with destination port 53.

o List of all flows records that match protocol TCP and
port 22.

o List source IP addresses with the associated number of
flows, packets and bytes sorted by the number of flows.
(aggregation, sorting)

The first query is a basic one and tests implementation of
aggregation operation. The partial sums should be calculated
on each node locally and the total sum is an aggregation of
the partial sums. The second query tests the filter operation
and minimize the data transfer by summing the results locally
while the third query selects relatively a lot of flow records
and transfers them over the network. The fourth query is a
more complex one as it aggregates flow records according to
the IP address locally and may partially sort them locally as
well, transfers the local results and aggregates and sort them
globally.

D. Measurement

Each query is run three times and the time of the longest run
is the resulting query time.In order to eliminate the influence
of a disk cache it is necessary to flush the cache before each
query. Besides the time to answer the query an interesting
characteristic is the performance per single node. We define
the performance per single node as the total number of queried
flow records divided by the number of nodes and the time to
answer the query. Last but not least, we measure the time
to upload the data set into the cluster. The data set is stored
on a local disk of the access node the cluster. This means
that the disk of the access node may become bottleneck itself.
According to our measurement a single disk can provide more
than 3 millions flow records per second. If this bottleneck is
reached the framework can easily meet the requirements of the
collector which typically should sustain continous upload of 50



thousand flow records per second during normal operation and
quater a million during peaks on per monitored 10 Gbps link.
We leave the distribution of the data set in the cluster up to the
framework itself unless the framework requires manual upload.
In such a specific case the flow records in the uploaded subset
are distributed in a round robin manner into N smaller subsets
where N is the number of available nodes in the cluster and
each smaller subset is uploaded on a dedicated node provided
the replication factor is 1.

IV. EVALUATION

In order to characterize behavior of several frameworks we
utilize a real data set. The data set utilized in this evaluation
was collected from a large peering link between two national
research and education networks [18]]. It consists of the flow
records exported from the observation point over a single day.
In total, the data set contains 880 mil. of flow records collected
from 30 bil. packets and 27 terabytes of data corresponding to
network traffic captured on a 10 Gbps link over 24 hours. The
resulting data set consumes approximately 56 GB in binary
format and 86 GB in plain text csv format. We make this data
set publicly available E

Our experiments were carried out with the above described
data set and queries described in Sec. |IH_T[ We were, however,
limited by the available hardware available at the time of
each experiment and therefore the clusters are not consistent
in their configuration. In order to assess the frameworks we
describe each hardware setup in detail as well as we discuss
the performance per single node which, although biased due
to differing hardware, provide a relative measure of effectivity.

A. Hadoop

Our evaluation started with Hadoop framework as the
widely popular big data framework. The queries for Hadoop
were written as a dedicated implementation in Java (map and
reduce objects) and subsequently were executed over binary
as well as csv data set. Besides native implementation, Hive
and Pig providing SQL-like, respectively, functional interface,
were also evaluated. The evaluation captures comparison of
performance not only with a widely spread NfSen/NfDump
tool but also of various configurations aiming at the optimiza-
tion of Hadoop cluster and of the multiple queries running in
parallel. We utilize NfDump as a base line of effectivity as it
was utilized as a base line in previous works (e.g. in [7]]).

The underlying hardware is a dedicated cluster for Hadoop.
The cluster consists of 27 nodes (24 worker nodes) equipped
with 16-core processors (hyperthreading, Intel Xeon CPU E5-
2630 v3@2.40GHz) and 128 GB of operational memory and
local disks in each node with total capacity of 1.02 PB. The
data replication is by default set to a factor of four. Various
configurations aim at decreasing the latency that is related
to communication overhead in the cluster. Therefore each
experiment describes in detail these specific parameters.

We display only the results for the second query since the
results of others follow similar characteristic despite resulting

IThe anonymized data set is available at www.liberouter.org/anonymized
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Fig. 2. Hadoop default performance

times vary. Fig. [2] captures the query execution time in
dependence on the data set size expressed in hours. It is
possible to observe significant speed-up of execution time in
comparison with single node NfDump tool (see Fig[I) or that
of a smaller cluster tested in our initial experiments with small
Hadoop cluster [?]. It can also be seen, that the extensions
Pig and Hive perform worse than the native implementations.
Another interesting characteristic is that the execution time
rises slowly (especially in case of native implementation) with
the increasing amount of data. On the other hand despite
empty data set is queried the execution time is 20 s. Such an
overhead is caused by the nature of Hadoop communication
in the cluster. We try to reduce this overhead and our effort is
expressed in the following experiments.

An important parameter is Heartbeat interval. This interval
determines frequency of message exchange in the cluster. In
the above experiment the Heartbeat interval was a default
interval of 3 seconds. Since this interval significantly influence
the latency to distribute and collect results from the nodes we



try to decrease it to a single second. Fig. [3] displays the reply
times with 1 second interval. It can be seen that there is no
significant speed up and Pig delivers even worse in some cases
due to failing nodes.
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Fig. 3. Hadoop performance with HeartBeat 1s

Hadoop (hadoop-0.23, resp. YARN Hadoop2) also offers an
alternative approach of communication utilizing so called uber
mode. This mode offers faster delivery of results in case the
task can be handled on a single node. The graph in Fig. [
displays the results for a query over small data sets. In case
the query targets a very small data set, not larger than the
HDES block size, than the time to receive result is reduced.
On the other hand, the interval is still long enough not to
be considered interactive and in case of larger data set the
the overhead, naturally, remains. We also noticed increased
number of failures of Hive when uber mode was active.
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Fig. 4. Hadoop performance with uber mode (first five hours)

Another parameter that can be tuned is the replication factor.
Intuitively, we expect that the more replicas in the cluster the
better distribution of the workload in the cluster and higher
reliability. The graph in Fig. [] displays results for various

setup of replication factor (l1-meaning no replication, 2, 4 -
default and 6). The graph captures results of Hadoop native
implementation since but other implementations follow the
same characteristics but perform worse similarly to Fig. 2] The
results shows that the replication factor 1 leads to a significant
decrease of performance and this also holds for replication
factor 2. Replication factor 6 brings only little improvement
over replication factor 4 at the cost of 50
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In summary, the default Hadoop setup performs the best. In
order to compare solutions based on different frameworks to
each other we recalculate the performance per single node as
the number of records processed by a single node per second.
This characteristic is captured in Fig. [
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It can be seen that the Hadoop native implementation
achieves the best performance but in comparison with nfdump
running on a single node it reaches one third performance per
single node. The lower performance is caused by the over-
head related to distribution of the task in cluster (especially
communication) and programming language.



Further experiments with multiple queries running in paral-
lel show that Hadoop can support multiple queries running in
parallel, moreover, the performance per single node improves
with the increased load as the ratio between the overhead and
the load decreases. The data set was manually duplicated to
multiple copies and each query targets a different copy to avoid
reading the data from the disk cache. The results are displayed
in Fig. 22.
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Fig. 7. Hadoop performance with multiple queries running in parallel

The graph shows characteristic for 1, 5, 10 and 30 queries
running in parallel. Although the overall time to receive results
increases the communication overhead remains almost the
same but the amount of data read is increased up to 30 times
and hence the performance per single node improves as well.
In this case the performance per single is around 2 mil. flows
per second which is about 50% of that of dedicated single
node nfdump which achieves up to 4 mil. flows/s.

Besides queries, the collector must also be able to store the
flow records as they arrive. This is usually a bottleneck in case
of classical database systems since there is typically tens of
thousands flow records arriving each second (10 Gbps link).
To this end we also evaluate the storage performance when
loading the flow records into HDFS file system. The original
data set is stored locally at the master node and the whole data
set is loaded into HDFS or Hive tables at once. We were able
to achieve storage speed of up to 1.5 mil. flow records per
second in case of a binary data directly stored into the HDFS
and more than 800 thousand flow records per second in case
of csv or Hive tables.

If we consider that the up to date collectors are single node
solutions then the previous experiments were performed over
relatively high number of nodes. Therefore we also performed
the experiments on a smaller cluster namely 1 master and
5 worker nodes, however the outcomes were inline with the
previous summary and we refer interested reader to our results
in technical report [19].

Since the native nor Hive nor Pig performance were not
satisfactory enough due to long latency and large overhead

TABLE I
COMPARISON OF HIVE VS IMPALA.
Hive | Impala Impala
Query [s] txt [s] | Parq. [s]
1 hour data set
1 23.29 1.7 1.1
2 23.1 1.1 0.9
3 26.5 1.5 1.1
4 38.7 2.9 2.3
upload 45 44 63
24 hours data set
1 147.2 18.3 5.8
2 165.6 5.5 2.9
3 177.8 23.2 17.6
4 364.4 39.3 33.7
upload 910 905 1278

we tested more recent Apache projects, namely Impala: A
Modern, Open-Source SQL Engine for Hadoop [20]. Due to
the security issues with authentization we deployed Impala
only on 3 nodes of the above described cluster, however, the
results shows that even such a small Impala cluster achieves
similar results as Hive on the large cluster. As described
in [20]], Impala achieves these results utilizing only the HDFS
but reimplementing the execution engine thus it is not limited
by the latency of the native MapReduce and achieves low
overhead due to its backend C++ implementation.

The evaluation of Impala variants is captured in Table [l
and compared with Hive running on the small cluster as well.
We evaluated Impala native format and Impala combined with
Parquet [?], a columnar storage for Hadoop ecosystem. The
table displays response times to all four queries and the time
to upload data set into the cluster for two corner cases small
and large data set. The small data set shows that the response
time is not burdened with any large communication overhead
while the lower part of the table shows the order of magnitude
better response time in case of large data set.

B. Vertica

In order to evaluate a framework from an opposite side
of the spectrum, we select Vertica, a commercial distributed
columnar database with SQL interface. Vertica is freely avail-
able up to 3 nodes, hence we allocate only three nodes (ES5-
2670@2600 MHz, 4 GB of RAM, local disk).

Fig. [§| displays the graph which compares results of Vertica
with Hive as well. The frameworks are compared utilizing all
queries but the results are displayed for the second and the
fourth query only as these queries reveal significant charac-
teristics. The results show that the times to receive answers
increase proportionally to the amount of data without any
significant overhead which is clearly visible at the beginning of
the graph when the data set is small. The resulting time grows
only little steeper in comparison with Hive despite significantly
smaller cluster. Such a performance is caused by multiple
factors: other form of communication in the cluster, thread-
level parallelism at the node level and the columnar database
allowing to read only required fields in the records.



80

70

60

50

40

-+ Hive

-4 —e—Vertica

Query execution time [s]

30

20

Data amount [hour]

Fig. 8. Vertica performance in case of the second query

80

70

) /
50 e R e /
40

) /
20

- 4= Hive

—e—Vertica

Query execution time [s]

Data amount [hour]

Fig. 9. Vertica performance running the fourth query

Fig. 0] captures characteristic of the fourth query. This query
includes aggregation which means additional and intensive
access in the memory (in the associative field). It is possible
to observe that the times to answer the query meet when the
large data sets are used. While the execution of query 2 hits
the disk barrier in case of query 4 the limit is the access to the
memory. In case of the large cluster the aggregated memory
access is much higher than in case of the three machines.

While adding more nodes improves Vertica performance
nearly linearly we do not observe any improvement of upload
time in comparison to a single node setup.

C. Elastic Search

Elastic Search represents schemaless database for full text
search. Since the collector must deal with multiple templates
(structures of flow records) which are exported together with
the data itself as well as IPFIX allows for variable length
elements, it is tempting to utilize such a flexible technology to
process and query the flow records. Experiments with Elastic
Search were performed on a 9-node (8 workers) cluster with

TABLE I
COMPARISON OF ELASTIC SEARCH (8 NODES) VS IMPALA (DUPLICATE
FIGURES FROM TABLE[I).

Elastic Impala
Query | Search [s] | Parq. [s]
24 hours data set

1 41.7 5.8

2 14 2.9

3 24 17.6

4 474.1 33.7
upload 10810 1278

four core Intel Xeon CPU E3-1280 V2@3.60GHz and 32 GB
memory each.

Table |lI| shows the results of Elastic Search in comparison
with Impala. In some cases the Elastic Search exhibits even
shorter response times than Impala. To the best of our knowl-
edge such a short response time is caused by indexing which
in our case consumes 4 times the size of the data itself since
the index is built over all elements of the 5-tuple. Hovewer in
some cases, such as query one when all flow records must be
queried to obtain the results the performance degrades since
the indexing cannot be utilized at all and it is more expensive
to retrieve the data in JSON format which is native for Elastic
Search. Query 4 shows that when the query requires large
memory to execute the Elastic Search structures are probably
larger than those of Imapala and thus cannot utilize cache
effectively. Last but not least a standard tool (logstash) to
process and upload data into the cluster together with indexing
require prohibitive amount of time and renders Elastic Search
very slow in comparison with other tested frameworks to
upload data into the cluster.

V. CONCLUSION

The paper proposed a benchmark targeting distributed pro-
cessing of flow records collected from network probes in
hundreds of thousands per second. The benchmark focuses
on key aspects of the collector, that is, the store and query
performance.

The evaluation revealed several key characteristics of the
tested big data frameworks. Based on the results, we consider
native Hadoop, Hive and Pig as obsolete technology from
the perspective of flow collector as was proposed in several
previous works, e.g. [11]. A feasible solution to store and
query flow records seems to be Impala from the Hadoop
ecosystem as well as Vertica which performs comparably if
we consider weaker hardware setup.

Currently, we undertake effort into implementing a dedi-
cated storage and query collector based on MPI and we plan
to compare the results with general big data frameworks to
quantify the overhead related with robustness of big data
frameworks in comparison to plain distributed environment.
Our long term goal is to build distributed and robust collector
combining store&query approach with stream processing for
on-the-fly flow analysis.
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