
Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016 
	
	
	
	
	

Adaptive Traffic Processing for High-Speed
Networks

Lukáš Kekely, Viktor Puš, Jan Kořenek
CESNET a.l.e.

Zikova 4, Prague, Czech Republic
Email: kekely,pus,korenek@cesnet.cz

Abstract—The raising speeds of computer networks combined
with ever-increasing complexity of networking applications create
a need for smarter ways of traffic processing acceleration. In
this paper, we propose a novel concept of application-driven
auto-adaptation mechanism to dynamically divide network traffic
processing between CPU and hardware accelerator. Feasibility of
proposed approach is demonstrated on the realization of practical
flow monitoring application for high-speed networks.

I. INTRODUCTION

The aim of our work is to use auto-adaptation to the actual
characteristics of network traffic as part of hardware/software
codesign concept enabling creation of effective packet process-
ing systems. Our ultimate goal is to achieve improved per-
formance as compared with CPU-only implementation and/or
enhanced flexibility as compared with purely hardware (ASIC
or FPGA) implementation.

From the architectural point of view, the packet processing
system consists of: (1) a general CPU and (2) a hardware
accelerator placed before it on the path of incoming packets.
From the functional point of view, a packet processing is
split into: (a) complex tasks performed by a software program
running at CPU and (b) simpler operations offloadable into
hardware accelerator. Such arrangement generates interesting
problem of effective mapping of processing tasks (a) and (b)
onto the computational resources (1) and (2) for different
groups of packets, where auto-adaptation can prove beneficial.

Our concept supposes that the decision whether some
portion of network traffic should be offloaded to the accelerator
is non-trivial and therefore it must be done by the software
program. Therefore, we introduce an adaptation feedback loop
from the CPU to the accelerator and also all new unknown
packets must be forwarded to the CPU. Once the software
decides that the desired processing of a particular portion
of network traffic can be offloaded to the accelerator, the
feedback loop is used to adapt the behavior of accelerator
accordingly. From that moment on, the CPU is spared the
burden of processing that traffic portion, leaving more time
for other tasks.

II. SYSTEM DESIGN

Top-level scheme of the proposed system concept is shown
in Fig. 1. Fast data path is shown as solid arrows, while the
adaptation feedback loop is represented by dashed lines. The
system is composed of two main parts: hardware accelerator
and CPU, connected together through a data bus.

Packets
App 1

App M

...

Controller
Rules

Accelerator CPU

Preprocessing
Requests

Offload N

Offload 1

...

Fig. 1. Top-level view of proposed system concept

The modular architecture of hardware accelerator contains
multiple processing offload modules which may be configured
to perform various tasks. The distribution of packets among
these modules is configurable as well. The software application
plugins (App 1 to App M) perform advanced packet processing
tasks and control the offloading of portions of traffic. Their
decisions are forwarded to the controller, which aggregates
them and adapts the accelerator behavior accordingly. The
aggregation of offloading requests is done in a way ensuring
that information requirements of all applications are satisfied,
so no loss of interesting data occurs.

III. EXPERIMENTAL RESULTS

To prove the soundness of proposed approach, we have
implemented a complete proof of concept prototype. Using
the NFB-100G1 FPGA board [1] plugged into a commodity
server, we have created an instance of our concept performing
accelerated 100 Gbps network flow monitoring enhanced by
software support of application layer (L7) processing. Con-
ceptual scheme of the prototype is shown in Fig. 2.

Parser

Rule Lookup

Flow Cache

Packets

L7 parser 1

L7 parser N

...

Flow Exporter

Controller
Rules

P
C
I
 
E
x
p
r
e
s
s

IPFIX

NFB-100G1 CPU

Preprocessing
Requests

DMA

Buffers

Fig. 2. Implemented 100 Gbps flow monitoring system



Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016 
	
	
	
	
	

The processing of all incoming packets starts with parsing
of their headers and extracting metadata from them (Parser).
Extracted metadata is then used to assign the packets into
corresponding processing groups (network flows) based on
a software controlled set of rules (Rule Lookup). Packets
can be processed in accelerator’s flow cache (i.e. aggregated
to the selected type of flow record) or sent to the software
unchanged. Flow records from the flow cache are periodically
exported to the software. The data from the accelerator is
sent over the PCI Express bus to the software using multiple
independent channels to support multi-core processing. This
data is processed by an arbitrary set of L7 protocol parsers (we
used HTTP and DNS) and the flow exporter which analyze the
received data and exports the flow records to a flow collector.
The software modules also on the fly specify which portions
of traffic they want to inspect and which might be offloaded
into accelerator.

Since the accelerator’s flow cache has limited capacity, it
must be filled with care to enable accelerated processing of
as many packets as possible. Generally, it is advantageous to
select the currently biggest groups of packets (heaviest flows)
for offload into the cache. Of course, only if no application
plugin expressed its interest in them. The simplest method to
recognize the heaviest flows on network is based on a rule that
every flow is considered to be among the heaviest after arrival
of its first k packets for some selected decision threshold k.
We further extend this rule by automatically adapting the value
of k in reaction to the changing characteristics of network
traffic in time. The adaptation is based on the current load
of the accelerator’s flow cache. For the best offload ratio,
it is advantageous to keep the flow cache nearly full at all
times. That way, there is still some space left for new heavy
flows, while the amount of offloaded traffic is maximized. So,
the value of heavy flow decision threshold is decreased when
the flow cache utilization drops below a specified point and
increased when the flow cache becomes nearly full.

Graphs in Fig. 3, 4 and 5 show courses of various pro-
totype parameters during a whole day of its deployment in
our real backbone network Cesnet2. Packet offloading ability
is presented in the first graph. During the whole day, the
majority of all received packets (solid line) is processed by
accelerator (dashed line), leaving only a small portion for
software processing (dotted line). Offloaded portion of packets
is always between 70 and 85 % of total traffic and is shown in
gray shade bar at the bottom of the grid. With this offload ratio,
we are able to achieve the CPU utilization reduction of 2 to 3
times. The second graph shows the utilization of (number of
rules in) accelerator’s flow cache compared to the total number
of active flows in the network. Gray area demarcates a desired
flow cache load maintained by the adaptation of heavy flow
decision threshold. The adaptation of the threshold value is
illustrated in the third graph. During the heaviest network load,
the threshold value raises and when the load starts to decline
the threshold value follows.

IV. CONCLUSION

In this paper we proposed a general concept of hard-
ware/software codesign with auto-adaptation features for high-
speed network traffic processing. We showed the feasibility of

0 3 6 9 12 15 18 21 24

0

1

2

3

4

5

6

7

8
x 10

5

Time of day [h]

P
a
ck
et
s
p
er

se
co
n
d

 

 

A
cc
el
er
at
io
n
ra
ti
o
[%

]

Total received
Processed by accelerator
Processed by CPU

70

75

80

85

Fig. 3. Prototype deployment: processing of packets

0 3 6 9 12 15 18 21 24
0

1

2

3

4

5

6
x 10

5

Time of day [h]

F
lo

w
s

Total active

Offloaded to accelerator

Fig. 4. Prototype deployment: total and offloaded flows

0 3 6 9 12 15 18 21 24
0

5

10

15

Time of day [h]

D
ec
is
io
n
th
re
sh
o
ld

[p
ac
k
et
s]

 

 

Fig. 5. Prototype deployment: value of heavy flow decision threshold

proposed concept on implementation of its concrete instance –
flow monitoring system with application layer parsing support.
The implemented system was, thanks to adaptation, capable
to accelerate processing of around 80 % of incoming packets,
bringing reduction of CPU load by 2 to 3 times. Our future
work include creation and evaluation of systems based on pro-
posed concept performing other networking task (e.g. firewall,
intrusion prevention, anomaly detection).

ACKNOWLEDGMENT

This research has been partially supported by the “E-
infrastructure CESNET” project no. LM2015042 funded by
the Ministry of Education, Youth and Sports of the Czech Re-
public, and the project TH01010229 funded by the Technology
Agency of the Czech Republic.

REFERENCES

[1] Netcope Technologies, “NFB 100G1 FPGA Board,” 2016. [On-
line]. Available: https://www.invea.com/en/products-and-services/fpga-
cards/nfb-100g


