

InBand Network Telemetry With P4 and FPGA at 100 Gbps

Viktor Puš, CESNET (pus@cesnet.cz)

2017-06-07, DXDD, Utrecht

Why INT?

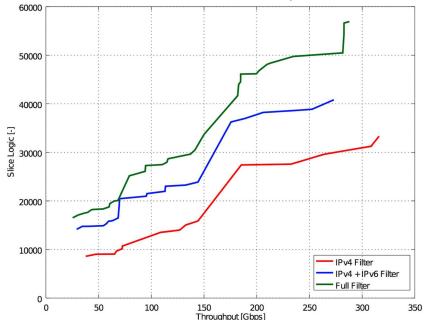
CESNET Coliberouter

Classical network monitoring: NetFlow/IPFIX

- Collect statistics about packets and bytes per network connection
 - Connection = set of packets sharing the same 5-tuple (SRC IP, DST IP, Proto, SRC Port, DST Port)
- Collected and exported by switches, routers, or dedicated boxes
- We get valuable data about L3 and L4 (sometimes L7)
- But we know very little about the underlying L2 infrastructure!
 - Overloaded lines, packet drops, latencies
- Switches hold this information how can we retrieve it?
 SNMP is 1988, slow, insecure, lacks detail

Inband Network Telemetry!

What is INT?



- "Inband Network Telemetry is a framework designed to allow the collection and reporting of network state by the data plane, without requiring intervention or work by the control plane."¹
- Packets carry dedicated INT headers, added by switches
 - Detailed info about each packet's journey
 - Path, per-switch latency, queue occupation, ...
 - New protocol, not standardized
 - Need switch and endpoint support
 - Perfect use case for P4
- Our goal: Ultimate INT endpoint and analytics

CESNET

- Czech NREN, 100G network, ~400k users
- Liberouter research team
 - Network acceleration since 2003
 - Applications: Monitoring, Security, DDoS Mitigation
 - Technologies: FPGA, 100GE, PCI Express, DPDK
 - Compiler from P4 to VHDL
 - Hardware acceleration made easy for network/security experts

Commercial Partners

- Products for the hardware acceleration of network traffic processing using FPGA
- Contribution: NFB-100G2

Flowmon Networks

- Everything needed to get complete network traffic visibility and analysis
- Contribution: Flow
 Exporter and Collector SW

INT@100Gbps

- CESNET
- INT-in-VXLAN traffic is pre-generated in PCAPs and sent via 2nd FPGA card at 100 Gbps
- FPGA receives INT-tagged traffic
- Removes INT headers and sends "original" packets out at line rate

Payload

- Destination is not aware of INT
- Relevant fields are forwarded to SW via DPDK
 P4 generate digest action
- Flow Exporter generates NetFlow records and sends them to Collector

Non tagged traffic

UDP

Switch 1 Switch 2

INT Data INT Data

Delay [µs]

32bits

Payload

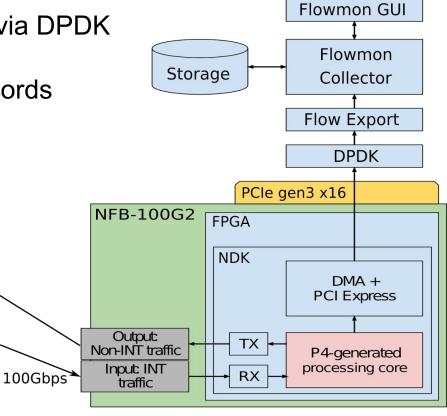
• Visualization and query interface

IP

Switch ID

32bits

Ethernet


VXLAN INT

INT-in-VXLAN

IP

Ethernet

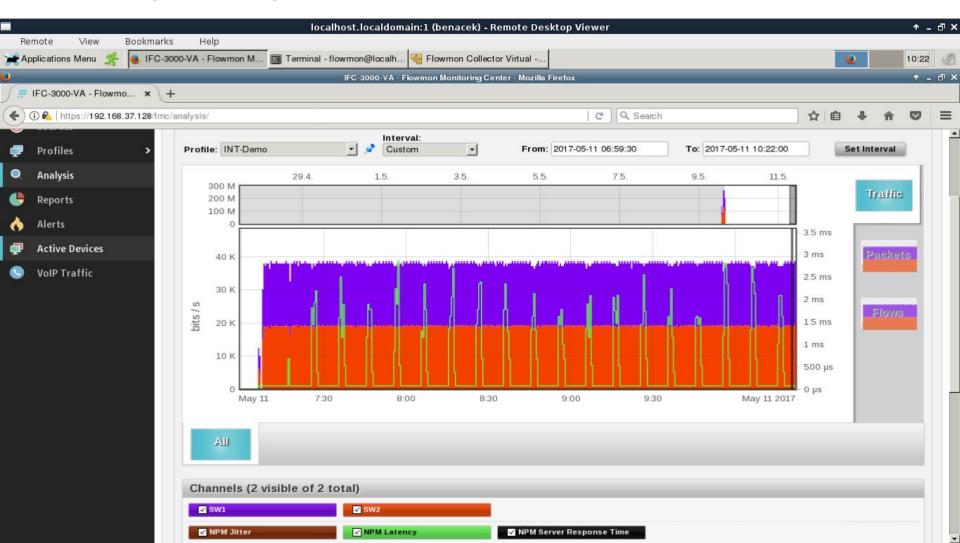
UDP

Console interface

						I
RX Statistics:						
		Ĺ	RXO	1		
Packets [-] Discarded [-] Octets [B]			65097920011 0 47653324455398			
Throughput [Gbps]		Î	96.4081850653	î		
<u>TX Statistics:</u>						
		I	⊤x0	1		
Packets [-] Octets [8]		ļ	65099452205 42837086559877	ļ		
Throughput [Gbps]		Ť.	86.6098969874	i		
Duration: 1 h: 6 m: 13 s						
			min_delay=40 us, min_delay=80 us,			
-	'hu May 11 10:	20:3	0 2017			
			min_delay=49 us, min_delay=96 us,			
				max_	leidy=112 us, a	1
	'hu May 11 10:	20:3	2 2017			
			min_delay=47 us, min_delay=106 us			

rage_delay = 44.67 erage_delay = 93.33

rage_delay = 51.67 erage_delay = 105.33


rage_delay = 52.75 verage_delay = 110.50

🗂 lihemuter

Flowmon Web GUI

Graphs, queries

Conclusion

- P4 shortens development time
 - New application, running at 100 Gbps and integrated into commercial-grade solution in about

3 weeks

- PCAP data (Python-scapy)
- Firmware core (P4)
- Flowmon Exporter input plugin (C)
- Flowmon Collector modification (C+PHP)
- No expert hardware knowledge needed
- Synthesis from P4 doesn't have negative impact on unique FPGA features
 - High (and guaranteed) throughput
 - Bandwidth = bus width × frequency
 - Constant latency
 - Easy extensions for unanticipated functions

Thank you!

Web: www.liberouter.org Twitter: @liberouter

P4 Workshop 2017-05

