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Abstract—Current high-speed network monitoring systems
focus more and more on the data from the application layers.
Flow data is usually enriched by the information from HTTP,
DNS and other protocols. The increasing speed of the network
links, together with the time consuming application protocol pars-
ing, require a new way of hardware acceleration. Therefore we
propose a new concept of hardware acceleration for flexible flow-
based application level monitoring which we call Software Defined
Monitoring (SDM). The concept relies on smart monitoring tasks
implemented in the software in conjunction with a configurable
hardware accelerator. The hardware accelerator is an application-
specific processor tailored to stateful flow processing. The mon-
itoring tasks reside in the software and can easily control the
level of detail retained by the hardware for each flow. This way
the measurement of bulk/uninteresting traffic is offloaded to the
hardware while the advanced monitoring over the interesting
traffic is performed in the software. The proposed concept allows
one to create flexible monitoring systems capable of deep packet
inspection at high throughput. Our pilot implementation in FPGA
is able to perform a 100 Gb/s flow traffic measurement augmented
by a selected application-level protocol parsing.

I. INTRODUCTION

The task of network traffic monitoring is one of the
key concepts in modern network engineering and security.
A golden standard in the network monitoring is the basic
NetFlow measurement. In NetFlow, the monitoring device
collects basic statistics about the IP flows and reports them to
a central storage collector in the Cisco NetFlow v5 protocol.
NetFlow measurement is a stateful process, because for each
packet the flow state record is updated in the device (e.g.
counters are incremented), and only the resulting numbers are
exported. This also implies that some information is lost in the
monitoring process and that the flow collector (where further
data processing is usually done) has a limited view on the
network. The ability to analyze the application layer in the
monitoring process is, therefore, very important in order to
improve the quality and flexibility of network monitoring.

The evolution of the NetFlow protocol led to the IPFIX
protocol [1]. IPFIX allows for the extension of the exported
flow record for any other additional information. While IPFIX
solves the task of transmitting the additional data, there re-
mains the issue of obtaining the additional data. This process
inevitably requires additional computational resources.

Pure software implementation of the application level flow

monitoring is certainly possible, yet its throughput is limited
mainly by the performance of commodity processors. It should
be noted that every new packet is inevitably a cache miss in
the CPU. Pure hardware implementation, on the other hand,
has poor flexibility because the complex protocol parsers are
very hard to implement in Hardware Description Languages.
Moreover, the evolving nature of network threats and security
issues implies the need for a fast change of the monitoring
process, which is much more difficult for the hardware. These
thoughts lead us to the idea of a hardware accelerator tightly
coupled to a software controller with monitoring applications
as software plugins.

We focus on the process of obtaining the high-quality,
unsampled flow measurement data augmented by application-
layer information. Our key idea is that even the advanced
application-layer processing usually needs to observe only
some flows containing only a small fraction of traffic (such
as DNS, with typically no more than 1 % of all packets), or
even only a small amount of packets within each of these flows
(such as HTTP, typically carrying the HTTP header in the first
few packets after the TCP handshake).

We employ a hardware accelerator to perform the offload
of the flow measurement for the bulk traffic that is not (or no
longer) interesting to the application-layer processing tasks.
Also, the hardware accelerator partially has the role of the
basic NIC - network interface card. Therefore, it passes a small
fraction of the packets intact to the monitoring software and
performs flow measurement of the rest.

The use of measurement offload can be easily controlled on
a per flow basis by the monitoring software and adjusted to
its current needs. Offload control is realized through unified
interface by dynamically specifying a set of rules. These
rules are then installed into the hardware accelerator to deter-
mine interestingness of individual network flows for advanced
software processing. Thanks to this unified control interface
the proposed system is very flexible and can be used for a
wide range of different network monitoring applications. The
whole system is designed to be easily extensible by monitoring
plugins at the software side. Each monitoring application (in
the form of SDM plugin) has three conceptual interfaces: input
packets, output measured values, and the control interface to
express interest and disinterest in particular fractions of the
network traffic. We demonstrate the SDM system on four dif-
ferent monitoring applications: NetFlow measurement, HTTP
parsing, a combination of both and DNS protocol parsing.978-1-4799-3360-0/14/$31.00 c©2014 IEEE
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The contribution of our work is three-fold:

• Design of a new concept of extensible high speed net-
work monitoring system. This includes a design of a
new application-specific processor for the stateful flow
measurement and its controller software. (Chapter II)

• Analysis of network traffic to show the possibilities for
the hardware acceleration. Assessment of the system
feasibility is based on the analysis. (Chapter III)

• Implementation and evaluation of the system in several
use cases. (Chapter IV)

II. SYSTEM DESIGN

A standard model of the flow measurement widely used
in 10 Gbps networks relies on a hardware network card per-
forming a packet capture, sometimes enhanced by a packet
distribution among several CPU cores. The captured traffic is
then sent over the host bus to the memory, where packets are
processed by the CPU cores. This model cannot be applied to
100 Gbps networks due to two major performance bottlenecks.
First, the throughput of today’s PCI Express busses is insuf-
ficient. The second bottleneck lies in limited computational
power which is insufficient for advanced monitoring tasks. We
propose a new acceleration model which overcomes the above-
mentioned bottlenecks by a well-defined hardware/software co-
design. The main idea is to give the hardware the ability to
handle basic traffic processing. Only a granular control of the
HW and some more advanced tasks are left for the software.

The basic idea of acceleration by the SDM system is
based on a finely controlled data loss and data distribution
realized by hardware preprocessing of the network traffic. The
preprocessing is fully controlled by the software applications.
Therefore, the first few packets of a new flow are sent to the
software, which decides which type of hardware preprocessing
will be used for the following packets of the flow. There are
two basic options for the hardware acceleration:

• It is possible to extract the interesting data from
packets in the hardware and send them only to the
software in a predefined format, which we call a
Unified Header (UH). Then only a few bytes for each
packet are transferred through the PCI Express bus
and the CPU has a lower load too because the packet
parsing is done in the hardware.

• Furthermore, packets can be aggregated to NetFlow
records directly in the HW which brings even higher
performance savings.

Some advanced monitoring applications perform deep packet
inspection on interesting fragments of traffic and, therefore,
have to analyze the whole packets. For example, extraction
of information from HTTP headers needs several first packets
for each HTTP flow. Therefore, the proposed system provides
a control over the hardware packet preprocessing at the flow
level granularity.

The top-level conceptual scheme of the proposed SDM
system is shown in Fig. 1. Data paths are represented by black
arrows and control paths by red arrows. The system is com-
posed of two main parts (firmware and software) connected

together through the PCI Express bus. The processing of all
incoming packets starts with the header parsing and extraction
of interesting metadata (Header Field Extractor - HFE block).
Extracted metadata are then used to classify the packet based
on a software defined set of rules (Classifier block). Each
rule identifies one specific flow and defines a method of
hardware preprocessing of its packets. More precisely, each
rule specifies the type of packet preprocessing and the target
software channel. Packets can be processed in a hardware flow
cache, dropped, trimmed or sent to the software unchanged or
in the form of a Unified Header (UH Generator block). Flow
records in the hardware flow cache are periodically exported
to the software. Sending the data to the software is realized
by the direct memory accesses (DMA) over the PCI Express
bus. There are multiple independent logical DMA channels
with the corresponding DMA buffers in the host RAM to aid
parallel processing by a multicore CPU.

The data can be stored in DMA buffers in the form of
whole packets, Unified Headers or flow records. This data can
be monitored by the set of user specific software applications
such as the flow exporter which analyzes the received data
and exports the flow records to the collector. User applications
can read the data from the selected DMA channels and can
also specify which types of traffic they want to inspect and
which flows can be preprocessed in hardware. For example,
an HTTP header parser needs to inspect every packet in the
HTTP flow until it acquires the required information (e.g.
the URL). Definitions of interesting and uninteresting bulk
traffic from all applications are passed to the SDM controller.
The SDM controller aggregates the definitions into rules and
configures the firmware behavior in order to achieve the
maximal possible reduction of the traffic resulting in maximal
hardware acceleration.
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Fig. 1. Conceptual top-level scheme of SDM system

A different view of the proposed SDM system is shown as a
layered scheme in Fig. 2. The SDM system is designed to work
on a hardware accelerated network board with an FPGA chip.
Our implementation uses a custom made board with 100 Gb/s
Ethernet interface and Virtex-7 FPGA with the NetCOPE
platform [2] realizing the basic network traffic capture and
communication with the software (DMA). The core of the
FPGA firmware is realized by the firmware part of the SDM
system described earlier, which is able to process the incoming
traffic at full speed of the network link. The software layer of
the SDM includes means for the basic configuration of the
firmware, network data transfer (black Data Path) and control
of SDM firmware (red Control Path). Data can be received
from the firmware in the standard PCAP or the proprietary SZE
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format. On the top of the SDM system, there are individual
user specific software applications.
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Fig. 2. Layered model of SDM acceleration system

Fig. 3 shows a top level implementation scheme of the
SDM firmware. The main firmware functionality is realized
by the processing pipeline of four modules: Header Field
Extractor (HFE), Search, Update and Export. This pipeline
processes the incoming network traffic and creates an out-
going data flow for the software. Incoming frames do not
flow directly through the processing pipeline, but are rather
stored in a parallel FIFO. The processing pipeline uses only
metainformation extracted from frames headers (UH). Whole
software control of the processing pipeline is managed by the
SW Access module which configures preprocessing rules used
in the Search unit. In order to achieve sufficient capacity for
rules and flow records, the firmware stores them in external
memory (Table1 and Table2). Access to the external memory
is managed by Memory Arbiter.
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Fig. 3. Detailed firmware scheme

As already described, the SDM firmware functionality is
realized by 6 main modules:

• Header Field Extractor analyzes headers of incom-
ing frames and extracts interesting information from
them, especially fields that clearly identify network
flows. In order to identify flows we use the classical

5-tuple: source and destination IP addresses, source
and destination TCP/UDP port numbers and a protocol
number. We use our own flexible low latency modular
implementation of the header parser [3].

• Search assigns an action to every processed frame
based on its flow identifier. An action assignment is
realized using a set of software defined rules in the
form of a flow identifier paired with action (Table1
in external memory). Management of the rule set is
possible through a control interface capable of an
atomic add, remove or update of the rules. A frame
classification by the Search unit works in 2 steps.
Firstly, the frames are assigned with an action based
on a small set of relatively static rules on flow groups
(e.g. flows with source port 80). Secondly, the action
from the first step can be further particularized by a
set of dynamic rules for individual flows. Standardly,
user applications set up rules of the first type during
startup and then they manage the set of second type
rules during traffic processing.

• Update manages the records for flows in Table2. It
mainly actualizes their values based on input UH and
its action. The action for every UH has the address
of the record and a specification of the operation
(aggregation type). Update of the record is realized
by two memory operations: read actual values of
the record fields and write back the updated values.
Another operation is the export of the record values,
possibly followed by the reset of the record values
in the memory. Records can be exported not only at
the flow end but also in a periodical manner, so that
the software applications can have actual information
about hardware monitored flows. Control of memory
allocation for records and their periodical export is
realized by SDM control software.
In the first version of SDM we implement only the
simple NetFlow aggregation as the record update op-
eration – increase packets/bytes counters, update flow
start/end timestamp and logical or of TCP flags. It is
however possible to support more types of records and
operations in the future.

• Export pairs together corresponding UH transaction
with frame data from FIFO memory. Then it chooses
the DMA channel and format for the data based on
action assigned by the Search module.

• SW Access is the main access point into the SDM
firmware from the software. Its primary function is
to manage the rules and to initiate the export of the
flow records based on software commands. Besides, it
contains all state and control registers. It also enables
direct software access into external memory (still used
only for debug).

• Memory Arbiter provides and manages access to the
external memory. Its main responsibilities are proper
interleaving of memory accesses and routing of read
data between units. It also ensures atomicity and
deterministic succession of all memory operations.

The network traffic preprocessing by firmware is controlled
from the software. The core of the controlling software are the
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monitoring applications. Each monitoring application has the
form of an SDM plugin. The main input to the plugin is the
data path carrying the packets, UHs or flow records. The plugin
output is the data that the plugin has parsed/detected/measured.
This output data is then added to the exported IPFIX flow
record. The third interface of the monitoring application is the
interface to the SDM Controller.

From the application view, the SDM controller accepts the
preprocessing requests from multiple applications, aggregates
them and administers them into the firmware. In order to
achieve that, the controller performs the following operations:

• On the fly management of the set of applications
currently controlling the firmware preprocessing.

• Preprocessing requests reception from applications.

• Storing and aggregation of the received preprocessing
rules (requests).

• Timed expiration of application rules.

The aggregation of preprocessing rules is based on different
degrees of data reduction. Ordered from the lowest degree
of data reduction the preprocessing types are: none (whole
packets), partial (UH), complete (flow record) and elimination
(packet drops). Therefore, aggregation of rules in the SDM
controller is done simply by the selection of the lowest
preprocessing degree (highest data preservation) for particular
flows which satisfy the information level requirements of all
applications.

When configuring the firmware, the SDM controller com-
municates directly with the SW Access module. In order
to maintain a proper functionality of SDM firmware, the
controller must carry out the following operations:

• Management of rules activated in the firmware (rule
add/delete/update) based on the application demands.

• Cyclic export of active flow records computed in the
firmware flow cache.

• Allocation of records in the firmware flow cache.

III. PROOF OF CONCEPT

This chapter analyzes the proposed concept. It is divided
into three sections. The first section proposes several possibly
weak points of the SDM concept. The second section presents
an analysis of network traffic. The aim of the analysis is to
show whether the SDM concept is a sound idea. The third
section draws conclusions about the presented analysis and
addresses all of the proposed weak points.

A. Potential Weak Points

From the presented SDM concept one can infer several
potential weak spots in the system design. Their existence
can (in bad circumstances) lead to lower effectiveness of
hardware preprocessing usage and therefore to a low degree of
achieved application acceleration. Major recognized potential
weaknesses of the SDM design are the following:

• Long duration of the feedback loop. In order to
maintain a throughput of 100 Gbps and more, the hard-
ware processing of packets cannot wait for software

decisions – the packets must be processed on the fly.
Therefore, the action chosen for the flow does not
affect a certain amount of leading packets from this
flow. If a high portion of flows on the monitored link
have an extremely short duration, the acceleration ratio
achievable from the usage of SDM declines.

• Limited firmware capacity. Because of the fine gran-
ularity of preprocessing control, the firmware must
store some information about each known flow. The
capacity of table with search rules or flow records
in the firmware (Table1 or Table2 in Fig. 3) can be
restrictive. An extremely high number of concurrent
flows on the network can restrict the preprocessing
usage to only a small portion of the flows. Negative
effects of this restriction can be significantly reduced
by an adequate selection of preprocessed flows. Suit-
ability of the flow is given by the achievable reduction
of its data during preprocessing. It is generally desir-
able to prefer the preprocessing of large (heavy) flows.

• Insufficient data reduction. Hardware preprocessing
reduces the data quantity from the network by convert-
ing the packets into Unified Headers, aggregating them
into flow records or by dropping them completely. The
amount of data reduction is directly proportional to the
size of processed packets and flows. Therefore, in the
case of extremely short flows with very short packets
the effectiveness of data reduction of the SDM can be
relatively small.

• Overly granular control. The choice of the acceler-
ation control basic unit affects the number of required
rules in the Search module and the rate of their cre-
ation. The benefit from a preprocessing rule covering
a small portion of the incoming traffic is small. In the
extreme case, the overhead of rule creation can even
outweigh the SDM benefits. Also, rule generation in
case of extremely small units of control can exceed the
achievable throughput of the configuration interface.

B. Network Traffic Analysis

The magnitude of possible negative impacts of the de-
scribed weak spots is closely related to the character of
processed data. Therefore, we have analyzed the properties
of the network traffic in a real high-speed backbone network.
Based on the measured characteristics we have proven that the
proposed SDM system can perform very well when deployed
in real networks.

All of the measurements in this paper were conducted
in the high-speed CESNET2 backbone network. CESNET2
is Czech NREN which has optical links operating at speeds
up to 100 Gbps and routes mainly IP traffic. We conducted
all of our measurements during the standard working hours
of the workweek. We measured mean size of packets in
bytes, mean size of flows in packets and mean time duration
of flows. Because we aim for the application protocols, we
measured the mentioned characteristics, not only for the whole
network traffic on the link, but also for the selected application
protocols. We selected a set of interesting protocols: HTTP,
HTTPS, DNS, SMTP, SSH and SIP. Furthermore, we measured
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the percentage of these protocols in the captured traffic in the
matter of flows, packets and bytes.

The results of the basic network traffic analysis are shown
in Table I. The table shows that the statistics vary depending
on the application protocol. Dominant is the HTTP protocol
with more than a quarter of all flows and more than a half of
all packets and bytes. Moreover, HTTP flows and packets are
generally larger (heavier) and longer. A considerable amount
of traffic belongs to HTTPS, which has generally smaller and
longer flows than HTTP. A high amount of flows also belong
to the DNS protocol (one fifth), but this number is highly
disproportional to the DNS total packet and bytes percentage.
DNS flows are generally very small (light). A majority of them
consists of only one small packet.

Flows Packets Bytes Flow Flow Packet

[%] [%] [%] [packets] [s] [Bytes]

HTTP 25.45 54.36 58.68 63.1 7.167 963.2
HTTPS 14.28 6.92 4.75 14.3 8.493 611.7
DNS 18.89 0.72 0.17 1.1 0.179 207.2
SMTP 0.38 0.22 0.14 17.2 2.934 573.8
SSH 0.04 0.01 0.00 11.6 17.433 233.0
SIP 0.00 0.00 0.00 4.9 24.701 420.9
others 40.96 37.76 36.26 27.3 7.735 856.7

all 29.6 6.257 892.2

TABLE I. BASIC STATISTICAL CHARACTERISTICS OF NETWORK DATA

GROUPED BY THE APPLICATION PROTOCOL

Another interesting characteristic of the network is the
distribution of packet lengths. The majority of packets are
either very long (over 1300 B: 57 %) or very short (under
100 B: 35 %). Especially dominant are both extremes from
the range of lengths supported by the Ethernet standard – 42
and 1500 B. Medium sized packets are not very common.

There is already information about mean flow durations
for the selected application protocols in Table I. Further
information about the flow time durations can be seen in Fig.
4. Each line in the graph shows the percentage of flows that
last shorter than the given duration. Generally (red thicker line)
over 2

3
of all flows are shorter than 100 ms and only a tenth

of them exceed a duration of 10 s. Also majority of DNS and
SIP flows have a duration under 10 ms.

Fig. 4 shows further information about flow duration, but
does not say anything about time distribution of packets inside
the flows. Weights of individual flows are also not considered.
A better look at packet timing inside the flows can be shown by
measuring the relative arrival times of packets from the start of
the flow. Thus, the first packet of each flow has the zero relative
arrival time and its absolute arrival time marks the starting time
of that flow. Then, each consequent packet has a relative arrival
time equal to the difference of its absolute arrival time and
the marked start of the flow. Results of this measurement are
shown in Fig. 5. The graph shows that generally (red thicker
line) only a small portion of all packets arrive right after the
start of the flow – only a fifth of all packets arrive during the
first second of flow. This fact leads to the conclusion that
flows with short duration carry only a very few packets. The
conclusion is further strengthened by the fact that the majority
of flows have a very short duration. There are exceptions such
as DNS and SIP though.

There is already information about mean flow sizes for
selected application protocols in Table I. Further information
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about flow sizes can be seen in Fig. 6. Each line of the graph
shows the percentage of flows that consists of less packets than
a given number. Generally (red thicker line) only a tenth of all
network flows have more than 10 packets. Also, virtually all
DNS and SIP flows consist of a single packet.

Fig. 6 shows further information about flow sizes, but
does not clearly say anything about the percentage of all
packets carried by flows of different sizes. It is known that
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high-speed network traffic has a heavy-tailed character of
flow size distribution. The heavy-tailed character of flow size
distribution derived from the measured values is shown in Fig.
7. The graph shows the portions of all packets carried by
the specified percentage of the heaviest flows on the network.
It can be seen that generally (red thicker line) 0.1 % of the
heaviest flows carries around 60 % of all packets and 1 %
carries even around 85 %. An exception to the heavy-tailed
distribution of flow sizes is the DNS protocol. On the other
hand, SIP and SSH protocols have a heavier tail than average.
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Fig. 7. Portions of packets carried by the percentage of the heaviest flows

A consequence of the heavy-tailed character of the network
traffic is that even by selecting a small percentage of the
heaviest flows, we can cover the majority of packets. The
problem then lies in the effective prediction of which flows are
among the heaviest. More accurately, it lies in the capability to
recognize the heaviest flows only from the properties of their
first few packets. The simplest method of this recognition is
based on the rule that every flow is considered heavy after the
arrival of its first k packets for some selected decision threshold
k. The main advantage of this method is its simplicity – no
packet analysis nor advanced stateful information for the flows
is needed.

The measured accuracy of the heaviest flow selection by the
described simple method is shown in Fig. 8 and Fig. 9. These
graphs show the relations between the value of threshold k to
the portion of heavy marked flows (first graph) and packets
covered by them (second graph). By a combination of values
from both graphs we can see that with the rising decision
threshold the portion of flows marked heavy dramatically
decreases, but the percentage of covered packets decreases
rather slowly. For example, decision threshold k = 20 leads
to only 5 % of heavy marked flows covering around 85 % of
all packets. Exceptions are the DNS and to some extent also
HTTPS and SMTP protocols, where the percentage of covered
packets decreases quickly.

A different view of the simple heavy flow prediction
method effectiveness can be seen in Fig. 10. It shows the
mean number of packets covered by one heavy marked flow
for different values of the decision threshold k. Values shown
in the graph rise with the decision threshold to a considerably
higher number than the mean sizes of the flows from Table
I – hundreds or even thousands of packets instead of only tens
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Fig. 8. Heavy flow detection using the simple method – portions of selected
flows
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Fig. 9. Heavy flow detection using the simple method – portions of captured
packets
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Fig. 10. Mean number of captured packets per flow in flows selected using
the simple method

of them. This clearly proves that even a simple heavy flow
prediction method effectively predicts the heaviest flows.

C. Proof of Concept Conclusion

Based on the analysis results presented in this section
we can now draw conclusions about the negative effects of
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possible weak spots of the SDM design. The conclusions are:

• Long duration of feedback loop. The expected SDM
feedback loop delay is in the area of tens to hundreds
of milliseconds. Fig. 4 shows that the majority of flows
has a duration too short for this requirement (over 2

3

shorter than 100 ms). But in spite of that, the majority
of packets is carried by longer flows and arrives later
from the flow start (only a tenth of packets during the
first 100 ms according to Fig. 5). These results lead to
a small negative effect of feedback loop duration on
the system performance.

• Limited firmware capacity. Fig. 7 shows a heavy-tail
character of network traffic. Moreover, figures 8 and
9 show that even a very simple heavy flow prediction
method can give very good results. In conclusion,
even with a relatively small number of flow rules it is
possible to cover the majority of packets.

• Insufficient data reduction. Unified Headers and
Flow Records have sizes of tens of bytes. Table I
shows that rather large packets are mostly used – the
mean size is nearly 900 B. Therefore, a reduction of
network traffic bytes is sufficient.

• Overly granular control. Fig. 10 shows that with an
appropriate selection of flows it is possible to achieve
a high effectiveness of rules. Each rule can specify a
preprocessing offload into HW of hundreds or even
thousands of packets on average.

From these conclusions it is clear that possible weak spots
of the SDM design will not have a large negative impact on
system performance in real networks. Exceptions are protocols
like DNS with a very high percentage of single packet flows.
Fortunately, these protocols cover only a small portion of
network traffic (e.g. DNS with less than 1 %).

IV. RESULTS

In order to verify the proposed system further, we have
implemented the whole SDM system prototype. The hardware
part of the system is realized by the accelerator board with the
powerful Virtex-7 H580T FPGA. The whole FPGA firmware
occupies less than half of the available FPGA resources. That
includes not only the SDM functionality, such as packet header
parsing and NetFlow statistics updating, but also 100 Gbps
Ethernet, PCI-Express and QDR external memory interface
controllers. The software is realized as a set of plugins for
the Invea-Tech’s Flowmon exporter software [4]. This exporter
allows us to modify its functionality to the extent required by
the SDM system.

The designed SDM system brings acceleration of monitor-
ing applications based mainly on software defined hardware
acceleration of network traffic preprocessing. Control of the
preprocessing is mainly realized by the monitoring applications
through on the fly defined dynamic rules for particular flows.
These rules are generated as a reaction to the first few packets
of the flow. Therefore, there is some delay between the flow
start and rule application. The duration of this delay influences
the portion of packets affected by the rules. The basic view
of achievable SDM system effectiveness can be gained from

an examination of an achievable portion of packets whose
preprocessing was influenced by the dynamic flow rules.

In order to test the described ability of the SDM system
we created a simple use case. In this use case, only a specified
number of the first packets from each flow is interesting to
the software. All packets from unknown (new) flows are,
therefore, by default forwarded into the software application.
SDM controller software counts the number of packets in
each flow. Right after the reception of the specified number
of packets for a flow, the application creates a rule for the
firmware to drop all the following packets from this flow. This
decision method is absolutely the same as the simple heavy
flow detection method defined in the previous section.

In the described test case we have measured the portion
of packets dropped by the SDM firmware. The results are
projected into the graph in Fig. 11. The graph shows the
percentage of dropped (influenced) packets (solid lines) and
the percentage of flows for which the rule was created (dashed
lines). For comparison, analytical results from graphs 8 and 9
in the previous section are also shown (red). The result is that
the SDM system can influence preprocessing of up to 85 % of
all packets from real network traffic by dynamic flow rules. A
visible difference of about 10 % of influenced packets between
analytical and real results is caused by neglecting the duration
of rule creation and activation process in the analytical result.
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Fig. 11. Portions of offloadable packets and flows using the simple heavy
flow detection method
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Fig. 12. Mean number of offloadable packets per flow in flows selected using
the simple heavy flow detection method
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The graph in Fig. 11 also shows a similar character
of packets and flows portions as described in the previous
section – considerably faster decline in the percentage of flows
than in the percentage of packets. A better view is provided
in Fig. 12. There, the relation of the mean number of packets
influenced by one created rule over the decision threshold value
is shown (blue). The red line is analytical result of simple
heavy flow detection method effectiveness taken from Fig.
10. The graph shows that real measured effectiveness of this
method is slightly worse than the analysis suggests. But it is
still very effective and suitable for real usage.

Apart from this artificial use case, we also tested SDM
acceleration abilities in more realistic use cases. We tested the
performance of the system in the following four cases:

• Standard NetFlow measurement. In this use case,
all packets from the link are taken into account. By
default, they are sent to the software in the form of
UH. The software adds dynamic rules to offload the
NetFlow measurement of heavy flows (predicted by
the simple method) into the hardware accelerator.

• HTTP header analysis. We choose HTTP because
HTTP traffic is dominant in the networks. Therefore,
the acceleration of its analysis is of high importance.
In this use case we tested the application that parses
HTTP headers and extracts some interesting informa-
tion (e.g. URL, host, user-agent) from them. Extracted
information can then be used to augment the flow
records. Because the application works with the data
of HTTP packets, only the packets with a source
or destination port 80 are sent into the software by
default. Others are dropped in the hardware. Further-
more, the application adds dynamic rules to drop the
packets of HTTP flows in which it already detected
and parsed the HTTP header.

• Standard NetFlow enriched by HTTP analysis. This
case combines the two previous ones. Both applica-
tions are active at the same time without the need of
any changes in them. Their traffic requirements are
automatically combined by the SDM controller.

• DNS security analysis. We choose DNS because it
is a bit different from the other protocols. Its flows
are extremely short. Therefore, the dynamic flow rules
have virtually no effect on DNS preprocessing. But
the DNS traffic takes up less than a hundredth of
all network traffic. So, even with the use of default
rules only (no dynamic rules), SDM should be able to
massively accelerate the analysis.

The results of the SDM system testing in the described use
cases are shown in Figures 13 and 14. The figures show the
portions of all incoming packets and bytes preprocessed in the
hardware by a particular method. These hardware preprocess-
ing utilizations lead to a reduction of software application load
displayed in Table II. The table shows portions of incoming
packets and bytes that are processed by software applications
in particular use cases relative to the state without the SDM
accelerator. It also shows the percentage of flows for which
the rule is created in the hardware.
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Fig. 13. Portions of hardware preprocessing types in tested use cases
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Fig. 14. Portions of hardware preprocessing types in tested use cases

SW load [%] Rules in HW

Packets Bytes [% of flows]

NetFlow 17.55 0.86 12.16
HTTP 22.32 26.85 3.60
HTTP+NetFlow 32.42 27.30 11.84
DNS 0.73 0.16 0.00

TABLE II. SOFTWARE APPLICATIONS LOAD USING SDM IN TESTED

USE CASES, RELATIVE TO THE STATE WITHOUT THE SDM ACCELERATOR

Standard NetFlow measurement is mostly accelerated by
the hardware flow cache. In this way, the software application
load is reduced to less than a fifth of all packets (in the form
of UH or flow record). Further acceleration rises from the fact
that only UHs and flow records are sent to the software, instead
of complete packets. The software, therefore, does not parse
packets anymore and the PCI Express load is reduced to less
than one percent.

SDM accelerates the analysis of application protocols by
packet dropping based on static and dynamic rules. This leads
to the HTTP parser load being reduced to only about a fifth
of all packets and bytes and to the DNS parser load reduced
to less than a hundredth.

When the standard NetFlow measurement and the appli-
cation protocol parsing are used simultaneously, the load of
the application protocol parser is the same as when used
alone thanks to the DMA channel traffic splitting supported
by the SDM. The HTTP parser software still receives only
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the packets on the TCP port 80. The load of the software
NetFlow measurement slightly rises compared to the NetFlow
only measurement, because of the packets that are sent to the
software for the HTTP analysis (NetFlow measurement sees
also the HTTP packets).

V. RELATED WORK

We discussed several recent works that may to some extent
resemble the SDM concept. We, however, have shown that our
work has significant differences with those papers.

The proposed arrangement of our system resembles Open-
Flow [5]: Packets of an unknown flow are passed from the data
path to the controlling software, which in turn may choose to
install processing rules into the data path. Similar to plugins
for the OpenFlow controller, SDM is also designed to support
various software plugins. The main difference with OpenFlow
is that our system is aimed solely at monitoring, with the ability
to achieve a great amount of flexibility by using software
monitoring plugins. For the sake of performance, the SDM
controller is very tightly coupled with the hardware accelerator.
There is also an outlook to further improve the system in terms
of types of measurements that are performed by the hardware
accelerator (besides NetFlow). Therefore, our system is an
instance of Software Defined Networking in a broader sense,
yet it is completely different from OpenFlow.

FlowSense [6] is a lightweight system aiming at estimating
the network performance such as link utilization. It uses the
built-in counters of OpenFlow switches to estimate the network
parameters. While this approach brings virtually no overhead,
its possibilities are limited by the OpenFlow protocol messages
content and no other measurement can be done using this
technique. There is no support for application level processing
in FlowSense.

The OpenSketch architecture [7] defines a configurable
pipeline of hashing, classification and counting stages. These
stages can be configured to perform the computation of various
statistics. OpenSketch is tailored to compute sketches – a prob-
abilistic structure allowing us to measure and detect various
aspects of the network communication with a defined error
rate. It is not intended for hard NetFlow-like monitoring, nor
for exact, error-free measurements. Also, OpenSketch does not
allow for application level protocol parsing.

The Shunt system [8] is a hardware accelerator with
the support to divert a suspicious/interesting traffic to the
software for further analysis. To this end it resembles our
work, however, Shunt accelerates only packet forwarding and
does not include any possibilities to offload/accelerate the
flow measurement tasks. Our work is also more complete by
defining the software architecture with the plugin support.

VI. CONCLUSION

We have designed a new concept of application level flow
monitoring acceleration called Software Defined Monitoring.
The concept is able to support application level monitoring
and high-speed flow measurements at speeds over 100 Gbps
at the same time. Our system focuses on high speed and high
quality flow based measurement with the support of a hardware
accelerator. The accelerator is fully controlled by the software

feedback loop and offloads the simple monitoring tasks of bulk,
uninteresting traffic. The software, on the other hand, decides
about the traffic processing on a per-flow basis and performs
the advanced monitoring tasks such as application protocol
parsing. The software works with monitoring plugins, there-
fore, SDM is by design ready for extensions by new high-speed
monitoring tasks without the need to modify its hardware. It is
also anticipated that the hardware accelerator will be improved
to support additional types of offload in addition to current
packet parsing and NetFlow statistics counting.

We have performed a detailed analysis of the backbone
network traffic parameters so as to assess the feasibility of the
concept. We have also implemented the whole SDM system
using the Virtex-7 FPGA accelerator board. The system is
ready to handle 100 Gbps traffic. Using the SDM prototype,
we have evaluated several use cases for SDM. It is clear from
the obtained results that SDM is able to offload a significant
part of the network traffic to the hardware accelerator and
therefore to support a much higher throughput than a pure
software solution. The results show a major speed-up in all
test cases.
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